2,422 research outputs found

    TreatJS: Higher-Order Contracts for JavaScript

    Get PDF
    TreatJS is a language embedded, higher-order contract system for JavaScript which enforces contracts by run-time monitoring. Beyond providing the standard abstractions for building higher-order contracts (base, function, and object contracts), TreatJS's novel contributions are its guarantee of non-interfering contract execution, its systematic approach to blame assignment, its support for contracts in the style of union and intersection types, and its notion of a parameterized contract scope, which is the building block for composable run-time generated contracts that generalize dependent function contracts. TreatJS is implemented as a library so that all aspects of a contract can be specified using the full JavaScript language. The library relies on JavaScript proxies to guarantee full interposition for contracts. It further exploits JavaScript's reflective features to run contracts in a sandbox environment, which guarantees that the execution of contract code does not modify the application state. No source code transformation or change in the JavaScript run-time system is required. The impact of contracts on execution speed is evaluated using the Google Octane benchmark.Comment: Technical Repor

    Lightweight Multilingual Software Analysis

    Full text link
    Developer preferences, language capabilities and the persistence of older languages contribute to the trend that large software codebases are often multilingual, that is, written in more than one computer language. While developers can leverage monolingual software development tools to build software components, companies are faced with the problem of managing the resultant large, multilingual codebases to address issues with security, efficiency, and quality metrics. The key challenge is to address the opaque nature of the language interoperability interface: one language calling procedures in a second (which may call a third, or even back to the first), resulting in a potentially tangled, inefficient and insecure codebase. An architecture is proposed for lightweight static analysis of large multilingual codebases: the MLSA architecture. Its modular and table-oriented structure addresses the open-ended nature of multiple languages and language interoperability APIs. We focus here as an application on the construction of call-graphs that capture both inter-language and intra-language calls. The algorithms for extracting multilingual call-graphs from codebases are presented, and several examples of multilingual software engineering analysis are discussed. The state of the implementation and testing of MLSA is presented, and the implications for future work are discussed.Comment: 15 page

    Practical Dynamic Symbolic Execution for JavaScript

    Get PDF

    SymJS: automatic symbolic testing of JavaScript web applications

    Full text link
    • …
    corecore