21,717 research outputs found

    Combining Relational Algebra, SQL, Constraint Modelling, and Local Search

    Full text link
    The goal of this paper is to provide a strong integration between constraint modelling and relational DBMSs. To this end we propose extensions of standard query languages such as relational algebra and SQL, by adding constraint modelling capabilities to them. In particular, we propose non-deterministic extensions of both languages, which are specially suited for combinatorial problems. Non-determinism is introduced by means of a guessing operator, which declares a set of relations to have an arbitrary extension. This new operator results in languages with higher expressive power, able to express all problems in the complexity class NP. Some syntactical restrictions which make data complexity polynomial are shown. The effectiveness of both extensions is demonstrated by means of several examples. The current implementation, written in Java using local search techniques, is described. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 30 pages, 5 figure

    Constrained Query Answering

    Get PDF
    Traditional answering methods evaluate queries only against positive and definite knowledge expressed by means of facts and deduction rules. They do not make use of negative, disjunctive or existential information. Negative or indefinite knowledge is however often available in knowledge base systems, either as design requirements, or as observed properties. Such knowledge can serve to rule out unproductive subexpressions during query answering. In this article, we propose an approach for constraining any conventional query answering procedure with general, possibly negative or indefinite formulas, so as to discard impossible cases and to avoid redundant evaluations. This approach does not impose additional conditions on the positive and definite knowledge, nor does it assume any particular semantics for negation. It adopts that of the conventional query answering procedure it constrains. This is achieved by relying on meta-interpretation for specifying the constraining process. The soundness, completeness, and termination of the underlying query answering procedure are not compromised. Constrained query answering can be applied for answering queries more efficiently as well as for generating more informative, intensional answers

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    The XML Query Language Xcerpt: Design Principles, Examples, and Semantics

    Get PDF
    Most query and transformation languages developed since the mid 90es for XML and semistructured data—e.g. XQuery [1], the precursors of XQuery [2], and XSLT [3]—build upon a path-oriented node selection: A node in a data item is specified in terms of a root-to-node path in the manner of the file selection languages of operating systems. Constructs inspired from the regular expression constructs , +, ?, and “wildcards” give rise to a flexible node retrieval from incompletely specified data items. This paper further introduces into Xcerpt, a query and transformation language further developing an alternative approach to querying XML and semistructured data first introduced with the language UnQL [4]. A metaphor for this approach views queries as patterns, answers as data items matching the queries. Formally, an answer to a query is defined as a simulation [5] of an instance of the query in a data item

    Compiling ER Specifications into Declarative Programs

    Full text link
    This paper proposes an environment to support high-level database programming in a declarative programming language. In order to ensure safe database updates, all access and update operations related to the database are generated from high-level descriptions in the entity- relationship (ER) model. We propose a representation of ER diagrams in the declarative language Curry so that they can be constructed by various tools and then translated into this representation. Furthermore, we have implemented a compiler from this representation into a Curry program that provides access and update operations based on a high-level API for database programming.Comment: Paper presented at the 17th Workshop on Logic-based Methods in Programming Environments (WLPE2007

    A contribution to the Semantics of Xcerpt, a Web Query and Transformation Language

    Get PDF
    Xcerpt [1] is a declarative and pattern-based query and transformation languag
    • 

    corecore