4,354 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Combined Nutrition and Exercise Interventions in Community Groups

    Get PDF
    Diet and physical activity are two key modifiable lifestyle factors that influence health across the lifespan (prevention and management of chronic diseases and reduction of the risk of premature death through several biological mechanisms). Community-based interventions contribute to public health, as they have the potential to reach high population-level impact, through the focus on groups that share a common culture or identity in their natural living environment. While the health benefits of a balanced diet and regular physical activity are commonly studied separately, interventions that combine these two lifestyle factors have the potential to induce greater benefits in community groups rather than strategies focusing only on one or the other. Thus, this Special Issue entitled “Combined Nutrition and Exercise Interventions in Community Groups” is comprised of manuscripts that highlight this combined approach (balanced diet and regular physical activity) in community settings. The contributors to this Special Issue are well-recognized professionals in complementary fields such as education, public health, nutrition, and exercise. This Special Issue highlights the latest research regarding combined nutrition and exercise interventions among different community groups and includes research articles developed through five continents (Africa, Asia, America, Europe and Oceania), as well as reviews and systematic reviews

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Design of new algorithms for gene network reconstruction applied to in silico modeling of biomedical data

    Get PDF
    Programa de Doctorado en Biotecnología, Ingeniería y Tecnología QuímicaLínea de Investigación: Ingeniería, Ciencia de Datos y BioinformáticaClave Programa: DBICódigo Línea: 111The root causes of disease are still poorly understood. The success of current therapies is limited because persistent diseases are frequently treated based on their symptoms rather than the underlying cause of the disease. Therefore, biomedical research is experiencing a technology-driven shift to data-driven holistic approaches to better characterize the molecular mechanisms causing disease. Using omics data as an input, emerging disciplines like network biology attempt to model the relationships between biomolecules. To this effect, gene co- expression networks arise as a promising tool for deciphering the relationships between genes in large transcriptomic datasets. However, because of their low specificity and high false positive rate, they demonstrate a limited capacity to retrieve the disrupted mechanisms that lead to disease onset, progression, and maintenance. Within the context of statistical modeling, we dove deeper into the reconstruction of gene co-expression networks with the specific goal of discovering disease-specific features directly from expression data. Using ensemble techniques, which combine the results of various metrics, we were able to more precisely capture biologically significant relationships between genes. We were able to find de novo potential disease-specific features with the help of prior biological knowledge and the development of new network inference techniques. Through our different approaches, we analyzed large gene sets across multiple samples and used gene expression as a surrogate marker for the inherent biological processes, reconstructing robust gene co-expression networks that are simple to explore. By mining disease-specific gene co-expression networks we come up with a useful framework for identifying new omics-phenotype associations from conditional expression datasets.In this sense, understanding diseases from the perspective of biological network perturbations will improve personalized medicine, impacting rational biomarker discovery, patient stratification and drug design, and ultimately leading to more targeted therapies.Universidad Pablo de Olavide de Sevilla. Departamento de Deporte e Informátic

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Leveraging elasticity theory to calculate cell forces: From analytical insights to machine learning

    Get PDF
    Living cells possess capabilities to detect and respond to mechanical features of their surroundings. In traction force microscopy, the traction of cells on an elastic substrate is made visible by observing substrate deformation as measured by the movement of embedded marker beads. Describing the substrates by means of elasticity theory, we can calculate the adhesive forces, improving our understanding of cellular function and behavior. In this dissertation, I combine analytical solutions with numerical methods and machine learning techniques to improve traction prediction in a range of experimental applications. I describe how to include the normal traction component in regularization-based Fourier approaches, which I apply to experimental data. I compare the dominant strategies for traction reconstruction, the direct method and inverse, regularization-based approaches and find, that the latter are more precise while the former is more stress resilient to noise. I find that a point-force based reconstruction can be used to study the force balance evolution in response to microneedle pulling showing a transition from a dipolar into a monopolar force arrangement. Finally, I show how a conditional invertible neural network not only reconstructs adhesive areas more localized, but also reveals spatial correlations and variations in reliability of traction reconstructions

    Tracing Evolution of Gene Transfer Agents Using Comparative Genomics

    Get PDF
    The accumulating evidence suggest that viruses and their components can be domesticated by their hosts, equipping them with convenient molecular toolkits for various functions. One of such domesticated system is Gene Transfer Agents (GTAs) that are produced by some bacteria and archaea. GTAs morphologically resemble small phage-like particles and contain random fragments of their host genome. They are produced only by a small fraction of the microbial population and are released through a lysis of the host cell. Bioinformatic analyses suggest that GTAs are especially abundant in the taxonomic class of Alphaproteobacteria, where they are vertically inherited and evolve as a part of their host genomes. In this work, we extensively analyze evolutionary patterns of alphaproteobacterial GTAs using comparative genomics, phylogenomics and machine learning methods. We initially develop an algorithm that validate the wide presence of GTA elements in alphaproteobacterial genomes, where they are generally mistaken for prophages due to their homology. Furthermore, we demonstrate that GTAs evolve under the selection that reduces the energetic cost of their production, indicating their importance for the conditions of the nutrient depletion. The genome-wide screenings of translational selection and coevolution signatures highlight the significance of GTAs as a stress-response adaptation for the horizontal gene transfer, revealing a set of previously unknown genes that could play a role in the GTA cycle. As production of GTAs leads to the host death, their maintenance is likely to be under a kin or group level selection. By combining our findings with accumulated body of knowledge, this work proposes a conceptual model illustrating the role of GTAs in bacterial populations and their persistence for hundreds of millions of years of evolution
    • …
    corecore