77,813 research outputs found

    Simplification of UML/OCL schemas for efficient reasoning

    Get PDF
    Ensuring the correctness of a conceptual schema is an essential task in order to avoid the propagation of errors during software development. The kind of reasoning required to perform such task is known to be exponential for UML class diagrams alone and even harder when considering OCL constraints. Motivated by this issue, we propose an innovative method aimed at removing constraints and other UML elements of the schema to obtain a simplified one that preserve the same reasoning outcomes. In this way, we can reason about the correctness of the initial artifact by reasoning on a simplified version of it. Thus, the efficiency of the reasoning process is significantly improved. In addition, since our method is independent from the reasoning engine used, any reasoning method may benefit from it.Peer ReviewedPostprint (author's final draft

    Model the System from Adversary Viewpoint: Threats Identification and Modeling

    Full text link
    Security attacks are hard to understand, often expressed with unfriendly and limited details, making it difficult for security experts and for security analysts to create intelligible security specifications. For instance, to explain Why (attack objective), What (i.e., system assets, goals, etc.), and How (attack method), adversary achieved his attack goals. We introduce in this paper a security attack meta-model for our SysML-Sec framework, developed to improve the threat identification and modeling through the explicit representation of security concerns with knowledge representation techniques. Our proposed meta-model enables the specification of these concerns through ontological concepts which define the semantics of the security artifacts and introduced using SysML-Sec diagrams. This meta-model also enables representing the relationships that tie several such concepts together. This representation is then used for reasoning about the knowledge introduced by system designers as well as security experts through the graphical environment of the SysML-Sec framework.Comment: In Proceedings AIDP 2014, arXiv:1410.322

    A New Language for the Visualization of Logic and reasoning

    Get PDF
    Many visual languages based on Euler diagrams have emerged for expressing relationships between sets. The expressive power of these languages varies, but the majority can only express statements involving unary relations and, sometimes, equality. We present a new visual language called Visual First Order Logic (VFOL) that was developed from work on constraint diagrams which are designed for software specification. VFOL is likely to be useful for software specification, because it is similar to constraint diagrams, and may also fit into a Z-like framework. We show that for every First Order Predicate Logic (FOPL) formula there exists a semantically equivalent VFOL diagram. The translation we give from FOPL to VFOL is natural and, as such, VFOL could also be used to teach FOPL, for example

    A Normal Form for Spider Diagrams of Order

    Get PDF
    We develop a reasoning system for an Euler diagram based visual logic, called spider diagrams of order. We de- fine a normal form for spider diagrams of order and provide an algorithm, based on the reasoning system, for producing diagrams in our normal form. Normal forms for visual log- ics have been shown to assist in proving completeness of associated reasoning systems. We wish to use the reasoning system to allow future direct comparison of spider diagrams of order and linear temporal logic
    corecore