12,754 research outputs found

    Advancing Robot Autonomy for Long-Horizon Tasks

    Full text link
    Autonomous robots have real-world applications in diverse fields, such as mobile manipulation and environmental exploration, and many such tasks benefit from a hands-off approach in terms of human user involvement over a long task horizon. However, the level of autonomy achievable by a deployment is limited in part by the problem definition or task specification required by the system. Task specifications often require technical, low-level information that is unintuitive to describe and may result in generic solutions, burdening the user technically both before and after task completion. In this thesis, we aim to advance task specification abstraction toward the goal of increasing robot autonomy in real-world scenarios. We do so by tackling problems that address several different angles of this goal. First, we develop a way for the automatic discovery of optimal transition points between subtasks in the context of constrained mobile manipulation, removing the need for the human to hand-specify these in the task specification. We further propose a way to automatically describe constraints on robot motion by using demonstrated data as opposed to manually-defined constraints. Then, within the context of environmental exploration, we propose a flexible task specification framework, requiring just a set of quantiles of interest from the user that allows the robot to directly suggest locations in the environment for the user to study. We next systematically study the effect of including a robot team in the task specification and show that multirobot teams have the ability to improve performance under certain specification conditions, including enabling inter-robot communication. Finally, we propose methods for a communication protocol that autonomously selects useful but limited information to share with the other robots.Comment: PhD dissertation. 160 page

    The BSM-AI project: SUSY-AI - Generalizing LHC limits on Supersymmetry with Machine Learning

    Get PDF
    A key research question at the Large Hadron Collider (LHC) is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: It requires the time consuming generation of scattering events, the simulation of the detector response, the event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiment. In the BSM-AI project we attack this challenge with a new approach. Machine learning tools are thought to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300,000 pMSSM model sets - each tested with 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93 percent. It has been validated further within the constrained MSSM and a minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded at http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/

    A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation

    Full text link
    Cellular electron cryo-tomography enables the 3D visualization of cellular organization in the near-native state and at submolecular resolution. However, the contents of cellular tomograms are often complex, making it difficult to automatically isolate different in situ cellular components. In this paper, we propose a convolutional autoencoder-based unsupervised approach to provide a coarse grouping of 3D small subvolumes extracted from tomograms. We demonstrate that the autoencoder can be used for efficient and coarse characterization of features of macromolecular complexes and surfaces, such as membranes. In addition, the autoencoder can be used to detect non-cellular features related to sample preparation and data collection, such as carbon edges from the grid and tomogram boundaries. The autoencoder is also able to detect patterns that may indicate spatial interactions between cellular components. Furthermore, we demonstrate that our autoencoder can be used for weakly supervised semantic segmentation of cellular components, requiring a very small amount of manual annotation.Comment: Accepted by Journal of Structural Biolog

    Cluster-based feedback control of turbulent post-stall separated flows

    Full text link
    We propose a novel model-free self-learning cluster-based control strategy for general nonlinear feedback flow control technique, benchmarked for high-fidelity simulations of post-stall separated flows over an airfoil. The present approach partitions the flow trajectories (force measurements) into clusters, which correspond to characteristic coarse-grained phases in a low-dimensional feature space. A feedback control law is then sought for each cluster state through iterative evaluation and downhill simplex search to minimize power consumption in flight. Unsupervised clustering of the flow trajectories for in-situ learning and optimization of coarse-grained control laws are implemented in an automated manner as key enablers. Re-routing the flow trajectories, the optimized control laws shift the cluster populations to the aerodynamically favorable states. Utilizing limited number of sensor measurements for both clustering and optimization, these feedback laws were determined in only O(10)O(10) iterations. The objective of the present work is not necessarily to suppress flow separation but to minimize the desired cost function to achieve enhanced aerodynamic performance. The present control approach is applied to the control of two and three-dimensional separated flows over a NACA 0012 airfoil with large-eddy simulations at an angle of attack of 99^\circ, Reynolds number Re=23,000Re = 23,000 and free-stream Mach number M=0.3M_\infty = 0.3. The optimized control laws effectively minimize the flight power consumption enabling the flows to reach a low-drag state. The present work aims to address the challenges associated with adaptive feedback control design for turbulent separated flows at moderate Reynolds number.Comment: 32 pages, 18 figure

    Geometry Processing of Conventionally Produced Mouse Brain Slice Images

    Full text link
    Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as an application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data.Comment: 14 pages, 11 figure

    Assisted Viewpoint Interaction for 3D Visualization

    Get PDF
    Many three-dimensional visualizations are characterized by the use of a mobile viewpoint that offers multiple perspectives on a set of visual information. To effectively control the viewpoint, the viewer must simultaneously manage the cognitive tasks of understanding the layout of the environment, and knowing where to look to find relevant information, along with mastering the physical interaction required to position the viewpoint in meaningful locations. Numerous systems attempt to address these problems by catering to two extremes: simplified controls or direct presentation. This research attempts to promote hybrid interfaces that offer a supportive, yet unscripted exploration of a virtual environment.Attentive navigation is a specific technique designed to actively redirect viewers' attention while accommodating their independence. User-evaluation shows that this technique effectively facilitates several visualization tasks including landmark recognition, survey knowledge acquisition, and search sensitivity. Unfortunately, it also proves to be excessively intrusive, leading viewers to occasionally struggle for control of the viewpoint. Additional design iterations suggest that formalized coordination protocols between the viewer and the automation can mute the shortcomings and enhance the effectiveness of the initial attentive navigation design.The implications of this research generalize to inform the broader requirements for Human-Automation interaction through the visual channel. Potential applications span a number of fields, including visual representations of abstract information, 3D modeling, virtual environments, and teleoperation experiences
    corecore