642 research outputs found

    Reachability as a Unifying Framework for Computing Helicopter Safe Operating Conditions and Autonomous Emergency Landing

    Full text link
    We present a numeric method to compute the safe operating flight conditions for a helicopter such that we can ensure a safe landing in the event of a partial or total engine failure. The unsafe operating region is the complement of the backwards reachable tube, which can be found as the sub-zero level set of the viscosity solution of a Hamilton-Jacobi (HJ) equation. Traditionally, numerical methods used to solve the HJ equation rely on a discrete grid of the solution space and exhibit exponential scaling with dimension, which is problematic for the high-fidelity dynamics models required for accurate helicopter modeling. We avoid the use of spatial grids by formulating a trajectory optimization problem, where the solution at each initial condition can be computed in a computationally efficient manner. The proposed method is shown to compute an autonomous landing trajectory from any operating condition, even in non-cruise flight conditions.Comment: Accepted for publication in the proceedings of the 2020 IFAC World Congres

    Reactive Task and Motion Planning for Robust Whole-Body Dynamic Locomotion in Constrained Environments

    Full text link
    Contact-based decision and planning methods are becoming increasingly important to endow higher levels of autonomy for legged robots. Formal synthesis methods derived from symbolic systems have great potential for reasoning about high-level locomotion decisions and achieving complex maneuvering behaviors with correctness guarantees. This study takes a first step toward formally devising an architecture composed of task planning and control of whole-body dynamic locomotion behaviors in constrained and dynamically changing environments. At the high level, we formulate a two-player temporal logic game between the multi-limb locomotion planner and its dynamic environment to synthesize a winning strategy that delivers symbolic locomotion actions. These locomotion actions satisfy the desired high-level task specifications expressed in a fragment of temporal logic. Those actions are sent to a robust finite transition system that synthesizes a locomotion controller that fulfills state reachability constraints. This controller is further executed via a low-level motion planner that generates feasible locomotion trajectories. We construct a set of dynamic locomotion models for legged robots to serve as a template library for handling diverse environmental events. We devise a replanning strategy that takes into consideration sudden environmental changes or large state disturbances to increase the robustness of the resulting locomotion behaviors. We formally prove the correctness of the layered locomotion framework guaranteeing a robust implementation by the motion planning layer. Simulations of reactive locomotion behaviors in diverse environments indicate that our framework has the potential to serve as a theoretical foundation for intelligent locomotion behaviors.Comment: 47 pages, 23 figures, 1 tabl

    Safe Robot Navigation in Cluttered Environments using Invariant Ellipsoids and a Reference Governor

    Full text link
    This paper considers the problem of safe autonomous navigation in unknown environments, relying on local obstacle sensing. We consider a control-affine nonlinear robot system subject to bounded input noise and rely on feedback linearization to determine ellipsoid output bounds on the closed-loop robot trajectory under stabilizing control. A virtual governor system is developed to adaptively track a desired navigation path, while relying on the robot trajectory bounds to slow down if safety is endangered and speed up otherwise. The main contribution is the derivation of theoretical guarantees for safe nonlinear system path-following control and its application to autonomous robot navigation in unknown environments

    On optimal multiplexing of an ensemble of discrete-time constrained control systems on matrix Lie groups

    Full text link
    We study a constrained optimal control problem for an ensemble of control systems. Each sub-system (or plant) evolves on a matrix Lie group, and must satisfy given state and control action constraints pointwise in time. In addition, certain multiplexing requirement is imposed: the controller must be shared between the plants in the sense that at any time instant the control signal may be sent to only one plant. We provide first-order necessary conditions for optimality in the form of suitable Pontryagin maximum principle in this problem. Detailed numerical experiments are presented for a system of two satellites performing energy optimal maneuvers under the preceding family of constraints.Comment: 29 pages, 7 figure

    Funnel Libraries for Real-Time Robust Feedback Motion Planning

    Full text link
    We consider the problem of generating motion plans for a robot that are guaranteed to succeed despite uncertainty in the environment, parametric model uncertainty, and disturbances. Furthermore, we consider scenarios where these plans must be generated in real-time, because constraints such as obstacles in the environment may not be known until they are perceived (with a noisy sensor) at runtime. Our approach is to pre-compute a library of "funnels" along different maneuvers of the system that the state is guaranteed to remain within (despite bounded disturbances) when the feedback controller corresponding to the maneuver is executed. We leverage powerful computational machinery from convex optimization (sums-of-squares programming in particular) to compute these funnels. The resulting funnel library is then used to sequentially compose motion plans at runtime while ensuring the safety of the robot. A major advantage of the work presented here is that by explicitly taking into account the effect of uncertainty, the robot can evaluate motion plans based on how vulnerable they are to disturbances. We demonstrate and validate our method using extensive hardware experiments on a small fixed-wing airplane avoiding obstacles at high speed (~12 mph), along with thorough simulation experiments of ground vehicle and quadrotor models navigating through cluttered environments. To our knowledge, these demonstrations constitute one of the first examples of provably safe and robust control for robotic systems with complex nonlinear dynamics that need to plan in real-time in environments with complex geometric constraints.Comment: International Journal of Robotics Research (To Appear

    Improved Optimization of Motion Primitives for Motion Planning in State Lattices

    Full text link
    In this paper, we propose a framework for generating motion primitives for lattice-based motion planners automatically. Given a family of systems, the user only needs to specify which principle types of motions, which are here denoted maneuvers, that are relevant for the considered system family. Based on the selected maneuver types and a selected system instance, the algorithm not only automatically optimizes the motions connecting pre-defined boundary conditions, but also simultaneously optimizes the end-point boundary conditions as well. This significantly reduces the time consuming part of manually specifying all boundary value problems that should be solved, and no exhaustive search to generate feasible motions is required. In addition to handling static a priori known system parameters, the framework also allows for fast automatic re-optimization of motion primitives if the system parameters change while the system is in use, e.g, if the load significantly changes or a trailer with a new geometry is picked up by an autonomous truck. We also show in several numerical examples that the framework can enhance the performance of the motion planner in terms of total cost for the produced solution.Comment: Manuscript updated after reviewer comments and submitted to IV 201

    Constraints on Nonlinear Finite Dimensional Flat Systems

    Full text link
    This chapter presents an approach to embed the input/state/output constraints in a unified manner into the trajectory design for differentially flat systems. To that purpose, we specialize the flat outputs (or the reference trajectories) as Bezier curves. Using the flatness property, the system's inputs/states can be expressed as a combination of Bezier curved flat outputs and their derivatives. Consequently, we explicitly obtain the expressions of the control points of the inputs/states Bezier curves as a combination of the control points of the flat outputs. By applying desired constraints to the latter control points, we find the feasible regions for the output Bezier control points i.e. a set of feasible reference trajectories.Comment: 53 pages, 24 figures. The second chapter of the PhD thesis of the autho

    Safe Learning of Quadrotor Dynamics Using Barrier Certificates

    Full text link
    To effectively control complex dynamical systems, accurate nonlinear models are typically needed. However, these models are not always known. In this paper, we present a data-driven approach based on Gaussian processes that learns models of quadrotors operating in partially unknown environments. What makes this challenging is that if the learning process is not carefully controlled, the system will go unstable, i.e., the quadcopter will crash. To this end, barrier certificates are employed for safe learning. The barrier certificates establish a non-conservative forward invariant safe region, in which high probability safety guarantees are provided based on the statistics of the Gaussian Process. A learning controller is designed to efficiently explore those uncertain states and expand the barrier certified safe region based on an adaptive sampling scheme. In addition, a recursive Gaussian Process prediction method is developed to learn the complex quadrotor dynamics in real-time. Simulation results are provided to demonstrate the effectiveness of the proposed approach.Comment: Submitted to ICRA 2018, 8 page

    Robust Trajectory Planning for Autonomous Parafoils under Wind Uncertainty

    Get PDF
    A key challenge facing modern airborne delivery systems, such as parafoils, is the ability to accurately and consistently deliver supplies into di cult, complex terrain. Robustness is a primary concern, given that environmental wind disturbances are often highly uncertain and time-varying, coupled with under-actuated dynamics and potentially narrow drop zones. This paper presents a new on-line trajectory planning algorithm that enables a large, autonomous parafoil to robustly execute collision avoidance and precision landing on mapped terrain, even with signi cant wind uncertainties. This algorithm is designed to handle arbitrary initial altitudes, approach geometries, and terrain surfaces, and is robust to wind disturbances which may be highly dynamic throughout the terminal approach. Explicit, real-time wind modeling and classi cation is used to anticipate future disturbances, while a novel uncertainty-sampling technique ensures that robustness to possible future variation is e ciently maintained. The designed cost-to-go function enables selection of partial paths which intelligently trade o between current and reachable future states. Simulation results demonstrate that the proposed algorithm reduces the worst-case impact of wind disturbances relative to state-of-the-art approaches.Charles Stark Draper Laborator

    Robust Trajectory Planning for Autonomous Parafoils under Wind Uncertainty

    Get PDF
    A key challenge facing modern airborne delivery systems, such as parafoils, is the ability to accurately and consistently deliver supplies into di cult, complex terrain. Robustness is a primary concern, given that environmental wind disturbances are often highly uncertain and time-varying, coupled with under-actuated dynamics and potentially narrow drop zones. This paper presents a new on-line trajectory planning algorithm that enables a large, autonomous parafoil to robustly execute collision avoidance and precision landing on mapped terrain, even with signi cant wind uncertainties. This algorithm is designed to handle arbitrary initial altitudes, approach geometries, and terrain surfaces, and is robust to wind disturbances which may be highly dynamic throughout the terminal approach. Explicit, real-time wind modeling and classi cation is used to anticipate future disturbances, while a novel uncertainty-sampling technique ensures that robustness to possible future variation is e ciently maintained. The designed cost-to-go function enables selection of partial paths which intelligently trade o between current and reachable future states. Simulation results demonstrate that the proposed algorithm reduces the worst-case impact of wind disturbances relative to state-of-the-art approaches.Charles Stark Draper Laborator
    • …
    corecore