12,042 research outputs found

    Constructive Multiuser Interference in Symbol Level Precoding for the MISO Downlink Channel

    Get PDF
    This paper investigates the problem of interference among the simultaneous multiuser transmissions in the downlink of multiple antennas systems. Using symbol level precoding, a new approach towards the multiuser interference is discussed along this paper. The concept of exploiting the interference between the spatial multiuser transmissions by jointly utilizing the data information (DI) and channel state information (CSI), in order to design symbol-level precoders, is proposed. In this direction, the interference among the data streams is transformed under certain conditions to useful signal that can improve the signal to interference noise ratio (SINR) of the downlink transmissions. We propose a maximum ratio transmission (MRT) based algorithm that jointly exploits DI and CSI to glean the benefits from constructive multiuser interference. Subsequently, a relation between the constructive interference downlink transmission and physical layer multicasting is established. In this context, novel constructive interference precoding techniques that tackle the transmit power minimization (min power) with individual SINR constraints at each user's receivers is proposed. Furthermore, fairness through maximizing the weighted minimum SINR (max min SINR) of the users is addressed by finding the link between the min power and max min SINR problems. Moreover, heuristic precoding techniques are proposed to tackle the weighted sum rate problem. Finally, extensive numerical results show that the proposed schemes outperform other state of the art techniques.Comment: Submitted to IEEE Transactions on Signal Processin

    Low-Complexity OFDM Spectral Precoding

    Full text link
    This paper proposes a new large-scale mask-compliant spectral precoder (LS-MSP) for orthogonal frequency division multiplexing systems. In this paper, we first consider a previously proposed mask-compliant spectral precoding scheme that utilizes a generic convex optimization solver which suffers from high computational complexity, notably in large-scale systems. To mitigate the complexity of computing the LS-MSP, we propose a divide-and-conquer approach that breaks the original problem into smaller rank 1 quadratic-constraint problems and each small problem yields closed-form solution. Based on these solutions, we develop three specialized first-order low-complexity algorithms, based on 1) projection on convex sets and 2) the alternating direction method of multipliers. We also develop an algorithm that capitalizes on the closed-form solutions for the rank 1 quadratic constraints, which is referred to as 3) semi-analytical spectral precoding. Numerical results show that the proposed LS-MSP techniques outperform previously proposed techniques in terms of the computational burden while complying with the spectrum mask. The results also indicate that 3) typically needs 3 iterations to achieve similar results as 1) and 2) at the expense of a slightly increased computational complexity.Comment: Accepted in IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 201

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems

    Space-Time Signal Design for Multilevel Polar Coding in Slow Fading Broadcast Channels

    Full text link
    Slow fading broadcast channels can model a wide range of applications in wireless networks. Due to delay requirements and the unavailability of the channel state information at the transmitter (CSIT), these channels for many applications are non-ergodic. The appropriate measure for designing signals in non-ergodic channels is the outage probability. In this paper, we provide a method to optimize STBCs based on the outage probability at moderate SNRs. Multilevel polar coded-modulation is a new class of coded-modulation techniques that benefits from low complexity decoders and simple rate matching. In this paper, we derive the outage optimality condition for multistage decoding and propose a rule for determining component code rates. We also derive an upper bound on the outage probability of STBCs for designing the set-partitioning-based labelling. Finally, due to the optimality of the outage-minimized STBCs for long codes, we introduce a novel method for the joint optimization of short-to-moderate length polar codes and STBCs

    Low-Complexity Reduced-Rank Beamforming Algorithms

    Full text link
    A reduced-rank framework with set-membership filtering (SMF) techniques is presented for adaptive beamforming problems encountered in radar systems. We develop and analyze stochastic gradient (SG) and recursive least squares (RLS)-type adaptive algorithms, which achieve an enhanced convergence and tracking performance with low computational cost as compared to existing techniques. Simulations show that the proposed algorithms have a superior performance to prior methods, while the complexity is lower.Comment: 7 figure
    corecore