825 research outputs found

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Teaching, Analyzing, Designing and Interactively Simulating of Sliding Mode Control

    Get PDF
    This paper introduces an interactive methodology to analize, design, and simulate sliding model controllers for R2 linear systems. This paper reviews sliding mode basic concepts and design methodologies and describes an interactive tool which has been developed to support teaching in this field. The tool helps students by generating a nice graphical and interactive display of most relevant concepts. This fact can be used so that students build their own intuition about the role of different parameters in a sliding mode controller. Described application has been coded with Sysquake using an event-driven solver technique. The Sysquake allows using precise integration methods in real time and handling interactivity in a simple manner.Peer ReviewedPostprint (published version

    OptiTrap: Optimal Trap Trajectories for Acoustic Levitation Displays

    Get PDF
    Acoustic levitation has recently demonstrated the ability to create volumetric content by trapping and quickly moving particles along reference paths to reveal shapes in mid-air. However, the problem of specifying physically feasible trap trajectories to display desired shapes remains unsolved. Even if only the final shape is of interest to the content creator, the trap trajectories need to determine where and when the traps need to be, for the particle to reveal the intended shape. We propose OptiTrap, the first structured numerical approach to compute trap trajectories for acoustic levitation displays. Our approach generates trap trajectories that are physically feasible and nearly time-optimal, and reveal generic mid-air shapes, given only a reference path (i.e., a shape with no time information). We provide a multi-dimensional model of the acoustic forces around a trap to model the trap-particle system dynamics and compute optimal trap trajectories by formulating and solving a non-linear path following problem. We formulate our approach and evaluate it, demonstrating how OptiTrap consistently produces feasible and nearly optimal paths, with increases in size, frequency, and accuracy of the shapes rendered, allowing us to demonstrate larger and more complex shapes than ever shown to date

    Trade-off modeling of superconducting levitation machines: theory and experiment

    Get PDF
    Based on the critical state model for the superconducting components, we develop a set of theoretical tools that allow to extract relevant engineering parameters of a superconducting levitation machine. We provide a number of analytical and numerical expressions for the evaluation of the electromagnetic quantities, energies and forces in 2D problems. This assumption includes: (i) rotational symmetric systems as those in bearings and motors, and also the case of (ii) translational symmetry as in long transportation lines. The theory, that trades off simplicity and predictive power builds on the vector potential/current density formulation of the Maxwell equations (A, J) and is validated by comparison against experimental tension-compression data in our universal test machine. As shown, very simple computer coding is required to implement the method.Funding of this research by Spanish MINECO and the European FEDER Program (Projects MAT2011-22719 and ENE2011-29741) and by Gobierno de Aragon (Research group T12) is gratefully acknowledged.Peer Reviewe

    Model Prediction-Based Approach to Fault Tolerant Control with Applications

    Get PDF
    Abstract— Fault-tolerant control (FTC) is an integral component in industrial processes as it enables the system to continue robust operation under some conditions. In this paper, an FTC scheme is proposed for interconnected systems within an integrated design framework to yield a timely monitoring and detection of fault and reconfiguring the controller according to those faults. The unscented Kalman filter (UKF)-based fault detection and diagnosis system is initially run on the main plant and parameter estimation is being done for the local faults. This critical information\ud is shared through information fusion to the main system where the whole system is being decentralized using the overlapping decomposition technique. Using this parameter estimates of decentralized subsystems, a model predictive control (MPC) adjusts its parameters according to the\ud fault scenarios thereby striving to maintain the stability of the system. Experimental results on interconnected continuous time stirred tank reactors (CSTR) with recycle and quadruple tank system indicate that the proposed method is capable to correctly identify various faults, and then controlling the system under some conditions

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    Model Identification, Updating, and Validation of an Active Magnetic Bearing High-Speed Machining Spindle for Precision Machining Operation

    Get PDF
    High-Speed Machining (HSM) spindles equipped with Active Magnetic Bearings (AMBs) are envisioned to be capable of autonomous self-identification and performance self-optimization for stable high-speed and high quality machining operation. High-speed machining requires carefully selected parameters for reliable and optimal machining performance. For this reason, the accuracy of the spindle model in terms of physical and dynamic properties is essential to substantiate confidence in its predictive aptitude for subsequent analyses.This dissertation addresses system identification, open-loop model development and updating, and closed-loop model validation. System identification was performed in situ utilizing the existing AMB hardware. A simplified, nominal open-loop rotor model was developed based on available geometrical and material information. The nominal rotor model demonstrated poor correlation when compared with open-loop system identification data. Since considerable model error was realized, the nominal rotor model was corrected by employing optimization methodology to minimize the error of resonance and antiresonance frequencies between the modeled and experimental data.Validity of the updated open-loop model was demonstrated through successful implementation of a MIMO u-controller. Since the u-controller is generated based on the spindle model, robust levitation of the real machining spindle is achieved only when the model is of high fidelity. Spindle performance characterization was carried out at the tool location through evaluations of the dynamic stiffness as well as orbits at various rotational speeds. Updated model simulations exhibited high fidelity correspondence to experimental data confirming the predictive aptitude of the updated model. Further, a case study is presented which illustrates the improved performance of the u-controller when designed with lower uncertainty of the model\u27s accurac

    Information-theoretic determination of ponderomotive forces

    Full text link
    From the equilibrium condition δS=0\delta S=0 applied to an isolated thermodynamic system of electrically charged particles and the fundamental equation of thermodynamics (dU=TdS−(f⋅dr)dU = T dS-(\mathbf{f}\cdot d\mathbf{r})) subject to a new procedure, it is obtained the Lorentz's force together with non-inertial terms of mechanical nature. Other well known ponderomotive forces, like the Stern-Gerlach's force and a force term related to the Einstein-de Haas's effect are also obtained. In addition, a new force term appears, possibly related to a change in weight when a system of charged particles is accelerated.Comment: 10 page

    Model Identification, Updating, and Validation of an Active Magnetic Bearing High-Speed Machining Spindle for Precision Machining Operation

    Get PDF
    High-Speed Machining (HSM) spindles equipped with Active Magnetic Bearings (AMBs) are envisioned to be capable of autonomous self-identification and performance self-optimization for stable high-speed and high quality machining operation. High-speed machining requires carefully selected parameters for reliable and optimal machining performance. For this reason, the accuracy of the spindle model in terms of physical and dynamic properties is essential to substantiate confidence in its predictive aptitude for subsequent analyses.This dissertation addresses system identification, open-loop model development and updating, and closed-loop model validation. System identification was performed in situ utilizing the existing AMB hardware. A simplified, nominal open-loop rotor model was developed based on available geometrical and material information. The nominal rotor model demonstrated poor correlation when compared with open-loop system identification data. Since considerable model error was realized, the nominal rotor model was corrected by employing optimization methodology to minimize the error of resonance and antiresonance frequencies between the modeled and experimental data.Validity of the updated open-loop model was demonstrated through successful implementation of a MIMO u-controller. Since the u-controller is generated based on the spindle model, robust levitation of the real machining spindle is achieved only when the model is of high fidelity. Spindle performance characterization was carried out at the tool location through evaluations of the dynamic stiffness as well as orbits at various rotational speeds. Updated model simulations exhibited high fidelity correspondence to experimental data confirming the predictive aptitude of the updated model. Further, a case study is presented which illustrates the improved performance of the u-controller when designed with lower uncertainty of the model\u27s accurac
    • …
    corecore