498 research outputs found

    Nonparametric nonlinear model predictive control

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or databased technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multidimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC

    Feedback Linearizing Control Strategies for Chemical Engineering Applications.

    Get PDF
    Two widely studied control techniques which compensate for process nonlinearities are feedback linearization (FBL) and nonlinear model predictive control (NMPC). Feedback linearization has a low computational requirement but provides no means to explicitly handle constraints which are important in the chemical process industry. Nonlinear model predictive control provides explicit constraint compensation but only at the expense of high computational requirements. Both techniques suffer from the need for full-state feedback and may have high sensitivities to disturbances. The main work of this dissertation is to eliminate some of the disadvantages associated with FBL techniques. The computation time associated with solving a nonlinear programming problem at each time step restricts the use of NMPC to low-dimensional systems. By using linear model predictive control on top of a FBL controller, it is found that explicit constraint compensation can be provided without large computational requirements. The main difficulty is the required constraint mapping. This strategy is applied to a polymerization reactor, and stability results for discrete-time nonlinear systems are established. To alleviate the need for full-state feedback in FBL techniques it is necessary to construct an observer, which is very difficult for general nonlinear systems. A class of nonlinear systems is studied for which the observer construction is quite easy in that the design mimics the linear case. The class of systems referred to are those in which the unmeasured variables appear in an affine manner. The same observer construction can be used to estimate unmeasured disturbances, thereby providing a reduction in the controller sensitivity to those disturbances. Another contribution of this work is the application of feedback linearization techniques to two novel biotechnological processes. The first is a mixed-culture bioreactor in which coexistence steady states of the two cell populations must be stabilized. These steady states are unstable in the open-loop system since each population competes for the same substrate, and each has a different growth rate. The requirement of a pulsatile manipulated input complicates the controller design. The second process is a bioreactor described by a distributed parameter model in which undesired oscillations must be damped without the use of distributed control

    Integration of process design and control: A review

    Get PDF
    There is a large variety of methods in literature for process design and control, which can be classified into two main categories. The methods in the first category have a sequential approach in which, the control system is designed, only after the details of process design are decided. However, when process design is fixed, there is little room left for improving the control performance. Recognizing the interactions between process design and control, the methods in the second category integrate some control aspects into process design. With the aim of providing an exploration map and identifying the potential areas of further contributions, this paper presents a thematic review of the methods for integration of process design and control. The evolution paths of these methods are described and the advantages and disadvantages of each method are explained. The paper concludes with suggestions for future research activities

    Integrated design and control of chemical processes : part I : revision and clasification

    Get PDF
    [EN] This work presents a comprehensive classification of the different methods and procedures for integrated synthesis, design and control of chemical processes, based on a wide revision of recent literature. This classification fundamentally differentiates between “projecting methods”, where controllability is monitored during the process design to predict the trade-offs between design and control, and the “integrated-optimization methods” which solve the process design and the control-systems design at once within an optimization framework. The latter are revised categorizing them according to the methods to evaluate controllability and other related properties, the scope of the design problem, the treatment of uncertainties and perturbations, and finally, the type the optimization problem formulation and the methods for its resolution.[ES] Este trabajo presenta una clasificación integral de los diferentes métodos y procedimientos para la síntesis integrada, diseño y control de procesos químicos. Esta clasificación distingue fundamentalmente entre los "métodos de proyección", donde se controla la controlabilidad durante el diseño del proceso para predecir los compromisos entre diseño y control, y los "métodos de optimización integrada" que resuelven el diseño del proceso y el diseño de los sistemas de control a la vez dentro de un marco de optimización. Estos últimos se revisan clasificándolos según los métodos para evaluar la controlabilidad y otras propiedades relacionadas, el alcance del problema de diseño, el tratamiento de las incertidumbres y las perturbaciones y, finalmente, el tipo de la formulación del problema de optimización y los métodos para su resolución

    Control of solution MMA polymerization in a CSTR

    Get PDF

    Linear and Adaptive Controller Designs from Plant Data

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Multi Objective Optimization of Multi Component Isothermal Liquid-Phase Kinetic Sequence using Multivariable PI Control

    Get PDF
    In this paper, an optimal tuned saturated PI type controller with anti-windup structure is used for process control. In first step, a single objective genetic algorithm is used to find the optimal values of controller parameters. To show the difference between optimal and non-optimal control, we use this controller to track the square pulse. The results show that by choosing the control parameters randomly the output cannot track the reference signal but by optimizing the control parameters, the error, and settling time decreases significantly and efficiency of control increases but it needs more control effort. To find the optimal control parameters with lower control input, a multi objective genetic algorithm is used in next step and three points in Pareto front are analysed. It is shown that this method increases the control efficiency and needs lower control input than obtained by single objective genetic algorithm

    Integrated design and control of chemical processes : Part II: an illustrative example

    Get PDF
    [EN] In this paper, the integrated design paradigm is illustrated with several examples taken from the wide range of methodologies developed in last decades and presented in the first article of this series [Part 1]. The techniques included here belong to the category of simultaneous design and control in an optimization framework, and they have been developed by the authors’ research group and applied to the simultaneous process and control system design of the activated sludge process in a wastewater treatment plant (WWTP). In the present article, new aspects and results of those methodologies are presented for further understanding. The scope of the problem considers both a fixed plant layout and the plant structure selection by defining a simple superstructure. The control strategy chosen is a linear Model Predictive Controller (MPC) with terminal penalty in order to guarantee stability. As for the evaluation of the controllability, norm based indexes have been considered, and a multi-model approach to represent the uncertainty and assure robustness. The formulation of the optimization problem can be stated either as a multiobjective one considering costs and controllability, or as monoobjective adding some controllability constraints. Several strategies for solving the optimization problem are presented, mixing stochastic and deterministic methods, and genetic algorithms.[ES] En este artículo, el paradigma de diseño integrado se ilustra con varios ejemplos tomados de la amplia gama de metodologías desarrolladas en las últimas décadas y presentadas en el primer artículo de esta serie. Las técnicas utilizadas pertenecen a la categoría de diseño y control simultáneo en un marco de optimización siendo desarrolladas por el grupo de investigación de los autores y aplicadas al diseño simultáneo de procesos y sistemas de control del proceso de lodos activados en una planta de tratamiento de aguas residuales. El alcance del problema considera tanto una disposición fija de la planta como la selección de la estructura de la planta definiendo una superestructura simple. La estrategia de control elegida es un controlador predictivo modelo lineal (MPC). En cuanto a la evaluación de la controlabilidad, se han considerado índices basados en normas, y un enfoque multi-modelo para representar la incertidumbre y asegurar robustez. La formulación del problema de optimización se puede plantear bien como un objetivo multiobjetivo que considera costos y controlabilidad, o como monoobjetivo que añade algunas restricciones de controlabilidad. Se presentan varias estrategias para resolver el problema de optimización, mezclando métodos estocásticos y determinísticos, y algoritmos genéticos

    Adaptive Controller Design Directly from Plant Data

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore