246 research outputs found

    Maximin and maximal solutions for linear programming problems with possibilistic uncertainty

    Get PDF
    We consider linear programming problems with uncertain constraint coefficients described by intervals or, more generally, possi-bility distributions. The uncertainty is given a behavioral interpretation using coherent lower previsions from the theory of imprecise probabilities. We give a meaning to the linear programming problems by reformulating them as decision problems under such imprecise-probabilistic uncer-tainty. We provide expressions for and illustrations of the maximin and maximal solutions of these decision problems and present computational approaches for dealing with them

    The CONEstrip algorithm

    Get PDF
    Uncertainty models such as sets of desirable gambles and (conditional) lower previsions can be represented as convex cones. Checking the consistency of and drawing inferences from such models requires solving feasibility and optimization problems. We consider finitely generated such models. For closed cones, we can use linear programming; for conditional lower prevision-based cones, there is an efficient algorithm using an iteration of linear programs. We present an efficient algorithm for general cones that also uses an iteration of linear programs

    Day-ahead energy and reserve dispatch problem under non-probabilistic uncertainty

    Get PDF
    The current energy transition and the underlying growth in variable and uncertain renewable-based energy generation challenge the proper operation of power systems. Classical probabilistic uncertainty models, e.g., stochastic programming or robust optimisation, have been used widely to solve problems such as the day-ahead energy and reserve dispatch problem to enhance the day-ahead decisions with a probabilistic insight of renewable energy generation in real-time. By doing so, the scheduling of the power system becomes, production and consumption of electric power, more reliable (i.e., more robust because of potential deviations) while minimising the social costs given potential balancing actions. Nevertheless, these classical models are not valid when the uncertainty is imprecise, meaning that the system operator may not rely on a unique distribution function to describe the uncertainty. Given the Distributionally Robust Optimisation method, our approach can be implemented for any non-probabilistic, e.g., interval models rather than only sets of distribution functions (ambiguity set of probability distributions). In this paper, the aim is to apply two advanced non-probabilistic uncertainty models: Interval and Ï”-contamination, where the imprecision and in-determinism in the uncertainty (uncertain parameters) are considered. We propose two kinds of theoretical solutions under two decision criteria—Maximinity and Maximality. For an illustration of our solutions, we apply our proposed approach to a case study inspired by the 24-node IEEE reliability test system

    Imprecise probability models for inference in exponential families

    Get PDF
    When considering sampling models described by a distribution from an exponential family, it is possible to create two types of imprecise probability models. One is based on the corresponding conjugate distribution and the other on the corresponding predictive distribution. In this paper, we show how these types of models can be constructed for any (regular, linear, canonical) exponential family, such as the centered normal distribution. To illustrate the possible use of such models, we take a look at credal classification. We show that they are very natural and potentially promising candidates for describing the attributes of a credal classifier, also in the case of continuous attributes

    Optimisation under uncertainty applied to a bridge collision problem

    Get PDF
    We consider the problem of modelling the load on a bridge pillar when hit by a vehicle. This load depends on a number of uncertain variables, such as the mass of the vehicle and its speed on impact. The objective of our study is to analyse their effect on the load. More specifically, we are interested in finding the minimum distance of the pillar to the side of the road passing under the bridge such that a given constraint on the load is satisfied in 99% of impact cases, i.e., such that the probability of satisfying the constraint is 0.99. In addition, we look for solutions to the following optimisation problem: find the distance that minimises a given cost function while still satisfying a given constraint on the load. This optimisation problem under uncertain constraints is not a well-posed problem, so we turn it into a decision problem under uncertainty. For both problems, we consider two typical cases. In the first, so-called precise-probability case, all uncertain variables involved are modelled using probability distributions, and in the second, so-called imprecise-probability case, the uncertainty for at least some of the variables (in casu the mass) is modelled by an interval of possible values, which is a special imprecise-probabilistic model. In the first case, we compute the joint distribution using simple Monte Carlo simulation, and in the second case, we combine Monte Carlo simulation with newly developed techniques in the field of imprecise probabilities. For the optimisation problem with uncertain constraints, this leads to two distinct approaches with different optimality criteria, namely maximality and maximinity, which we discuss and compare

    Learning from samples using coherent lower previsions

    Get PDF
    Het hoofdonderwerp van dit werk is het afleiden, voorstellen en bestuderen van voorspellende en parametrische gevolgtrekkingsmodellen die gebaseerd zijn op de theorie van coherente onderprevisies. Een belangrijk nevenonderwerp is het vinden en bespreken van extreme onderwaarschijnlijkheden. In het hoofdstuk ‘Modeling uncertainty’ geef ik een inleidend overzicht van de theorie van coherente onderprevisies ─ ook wel theorie van imprecieze waarschijnlijkheden genoemd ─ en de ideeĂ«n waarop ze gestoeld is. Deze theorie stelt ons in staat onzekerheid expressiever ─ en voorzichtiger ─ te beschrijven. Dit overzicht is origineel in de zin dat ze meer dan andere inleidingen vertrekt van de intuitieve theorie van coherente verzamelingen van begeerlijke gokken. Ik toon in het hoofdstuk ‘Extreme lower probabilities’ hoe we de meest extreme vormen van onzekerheid kunnen vinden die gemodelleerd kunnen worden met onderwaarschijnlijkheden. Elke andere onzekerheidstoestand beschrijfbaar met onderwaarschijnlijkheden kan geformuleerd worden in termen van deze extreme modellen. Het belang van de door mij bekomen en uitgebreid besproken resultaten in dit domein is voorlopig voornamelijk theoretisch. Het hoofdstuk ‘Inference models’ behandelt leren uit monsters komende uit een eindige, categorische verzameling. De belangrijkste basisveronderstelling die ik maak is dat het bemonsteringsproces omwisselbaar is, waarvoor ik een nieuwe definitie geef in termen van begeerlijke gokken. Mijn onderzoek naar de gevolgen van deze veronderstelling leidt ons naar enkele belangrijke representatiestellingen: onzekerheid over (on)eindige rijen monsters kan gemodelleerd worden in termen van categorie-aantallen (-frequenties). Ik bouw hier op voort om voor twee populaire gevolgtrekkingsmodellen voor categorische data ─ het voorspellende imprecies Dirichlet-multinomiaalmodel en het parametrische imprecies Dirichletmodel ─ een verhelderende afleiding te geven, louter vertrekkende van enkele grondbeginselen; deze modellen pas ik toe op speltheorie en het leren van Markov-ketens. In het laatste hoofdstuk, ‘Inference models for exponential families’, verbreed ik de blik tot niet-categorische exponentiĂ«le-familie-bemonsteringsmodellen; voorbeelden zijn normale bemonstering en Poisson-bemonstering. Eerst onderwerp ik de exponentiĂ«le families en de aanverwante toegevoegde parametrische en voorspellende previsies aan een grondig onderzoek. Deze aanverwante previsies worden gebruikt in de klassieke Bayesiaanse gevolgtrekkingsmodellen gebaseerd op toegevoegd updaten. Ze dienen als grondslag voor de nieuwe, door mij voorgestelde imprecieze-waarschijnlijkheidsgevolgtrekkingsmodellen. In vergelijking met de klassieke Bayesiaanse aanpak, laat de mijne toe om voorzichtiger te zijn bij de beschrijving van onze kennis over het bemonsteringsmodel; deze voorzichtigheid wordt weerspiegeld door het op deze modellen gebaseerd gedrag (getrokken besluiten, gemaakte voorspellingen, genomen beslissingen). Ik toon ten slotte hoe de voorgestelde gevolgtrekkingsmodellen gebruikt kunnen worden voor classificatie door de naĂŻeve credale classificator.This thesis's main subject is deriving, proposing, and studying predictive and parametric inference models that are based on the theory of coherent lower previsions. One important side subject also appears: obtaining and discussing extreme lower probabilities. In the chapter ‘Modeling uncertainty’, I give an introductory overview of the theory of coherent lower previsions ─ also called the theory of imprecise probabilities ─ and its underlying ideas. This theory allows us to give a more expressive ─ and a more cautious ─ description of uncertainty. This overview is original in the sense that ─ more than other introductions ─ it is based on the intuitive theory of coherent sets of desirable gambles. I show in the chapter ‘Extreme lower probabilities’ how to obtain the most extreme forms of uncertainty that can be modeled using lower probabilities. Every other state of uncertainty describable by lower probabilities can be formulated in terms of these extreme ones. The importance of the results in this area obtained and extensively discussed by me is currently mostly theoretical. The chapter ‘Inference models’ treats learning from samples from a finite, categorical space. My most basic assumption about the sampling process is that it is exchangeable, for which I give a novel definition in terms of desirable gambles. My investigation of the consequences of this assumption leads us to some important representation theorems: uncertainty about (in)finite sample sequences can be modeled entirely in terms of category counts (frequencies). I build on this to give an elucidating derivation from first principles for two popular inference models for categorical data ─ the predictive imprecise Dirichlet-multinomial model and the parametric imprecise Dirichlet model; I apply these models to game theory and learning Markov chains. In the last chapter, ‘Inference models for exponential families’, I enlarge the scope to exponential family sampling models; examples are normal sampling and Poisson sampling. I first thoroughly investigate exponential families and the related conjugate parametric and predictive previsions used in classical Bayesian inference models based on conjugate updating. These previsions serve as a basis for the new imprecise-probabilistic inference models I propose. Compared to the classical Bayesian approach, mine allows to be much more cautious when trying to express what we know about the sampling model; this caution is reflected in behavior (conclusions drawn, predictions made, decisions made) based on these models. Lastly, I show how the proposed inference models can be used for classification with the naive credal classifier
    • 

    corecore