1,978 research outputs found

    Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Full text link
    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation by tissue optical properties, an effect that causes spectral corruption. Predictions of the spectral variations of light fluence in tissue are challenging since the spatial distribution of optical properties in tissue cannot be resolved in high resolution or with high accuracy by current methods. Spectral corruption has fundamentally limited the quantification accuracy of optical and optoacoustic methods and impeded the long sought-after goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical but still unattainable target for the assessment of oxygenation in physiological processes and disease. We discover a new principle underlying light fluence in tissues, which describes the wavelength dependence of light fluence as an affine function of a few reference base spectra, independently of the specific distribution of tissue optical properties. This finding enables the introduction of a previously undocumented concept termed eigenspectra Multispectral Optoacoustic Tomography (eMSOT) that can effectively account for wavelength dependent light attenuation without explicit knowledge of the tissue optical properties. We validate eMSOT in more than 2000 simulations and with phantom and animal measurements. We find that eMSOT can quantitatively image tissue sO2 reaching in many occasions a better than 10-fold improved accuracy over conventional spectral optoacoustic methods. Then, we show that eMSOT can spatially resolve sO2 in muscle and tumor; revealing so far unattainable tissue physiology patterns. Last, we related eMSOT readings to cancer hypoxia and found congruence between eMSOT tumor sO2 images and tissue perfusion and hypoxia maps obtained by correlative histological analysis

    Simultaneous Parameter and Input Estimation of a Respiratory Mechanics Model

    Get PDF
    Real-time noninvasive estimation of respiratory mechanics in spontaneously breathing patients is still an open problem in the field of critical care. Even assuming that the system is a simplistic first-order single-compartment model, the presence of unmeasured patient effort still makes the problem complex since both the parameters and part of the input are unknown. This paper presents an approach to overcome the underdetermined nature of the mathematical problem by infusing physiological knowledge into the estimation process and using it to construct an optimization problem subject to physiological constraints. As it relies only on measurements available on standard ventilators, namely the flow and pressure at the patient’s airway opening, the approach is noninvasive. Additionally, breath by breath, it continually provides estimates of the patient respiratory resistance and elastance as well as of the muscle effort waveform without requiring maneuvers that would interfere with the desired ventilation pattern

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978

    Accelerated Cardiac Diffusion Tensor Imaging Using Joint Low-Rank and Sparsity Constraints

    Full text link
    Objective: The purpose of this manuscript is to accelerate cardiac diffusion tensor imaging (CDTI) by integrating low-rankness and compressed sensing. Methods: Diffusion-weighted images exhibit both transform sparsity and low-rankness. These properties can jointly be exploited to accelerate CDTI, especially when a phase map is applied to correct for the phase inconsistency across diffusion directions, thereby enhancing low-rankness. The proposed method is evaluated both ex vivo and in vivo, and is compared to methods using either a low-rank or sparsity constraint alone. Results: Compared to using a low-rank or sparsity constraint alone, the proposed method preserves more accurate helix angle features, the transmural continuum across the myocardium wall, and mean diffusivity at higher acceleration, while yielding significantly lower bias and higher intraclass correlation coefficient. Conclusion: Low-rankness and compressed sensing together facilitate acceleration for both ex vivo and in vivo CDTI, improving reconstruction accuracy compared to employing either constraint alone. Significance: Compared to previous methods for accelerating CDTI, the proposed method has the potential to reach higher acceleration while preserving myofiber architecture features which may allow more spatial coverage, higher spatial resolution and shorter temporal footprint in the future.Comment: 11 pages, 16 figures, published on IEEE Transactions on Biomedical Engineerin

    EXPERIMENTAL-COMPUTATIONAL ANALYSIS OF VIGILANCE DYNAMICS FOR APPLICATIONS IN SLEEP AND EPILEPSY

    Get PDF
    Epilepsy is a neurological disorder characterized by recurrent seizures. Sleep problems can cooccur with epilepsy, and adversely affect seizure diagnosis and treatment. In fact, the relationship between sleep and seizures in individuals with epilepsy is a complex one. Seizures disturb sleep and sleep deprivation aggravates seizures. Antiepileptic drugs may also impair sleep quality at the cost of controlling seizures. In general, particular vigilance states may inhibit or facilitate seizure generation, and changes in vigilance state can affect the predictability of seizures. A clear understanding of sleep-seizure interactions will therefore benefit epilepsy care providers and improve quality of life in patients. Notable progress in neuroscience research—and particularly sleep and epilepsy—has been achieved through experimentation on animals. Experimental models of epilepsy provide us with the opportunity to explore or even manipulate the sleep-seizure relationship in order to decipher different aspects of their interactions. Important in this process is the development of techniques for modeling and tracking sleep dynamics using electrophysiological measurements. In this dissertation experimental and computational approaches are proposed for modeling vigilance dynamics and their utility demonstrated in nonepileptic control mice. The general framework of hidden Markov models is used to automatically model and track sleep state and dynamics from electrophysiological as well as novel motion measurements. In addition, a closed-loop sensory stimulation technique is proposed that, in conjunction with this model, provides the means to concurrently track and modulate 3 vigilance dynamics in animals. The feasibility of the proposed techniques for modeling and altering sleep are demonstrated for experimental applications related to epilepsy. Finally, preliminary data from a mouse model of temporal lobe epilepsy are employed to suggest applications of these techniques and directions for future research. The methodologies developed here have clear implications the design of intelligent neuromodulation strategies for clinical epilepsy therapy
    • …
    corecore