14,056 research outputs found

    Parametric Regression on the Grassmannian

    Get PDF
    We address the problem of fitting parametric curves on the Grassmann manifold for the purpose of intrinsic parametric regression. As customary in the literature, we start from the energy minimization formulation of linear least-squares in Euclidean spaces and generalize this concept to general nonflat Riemannian manifolds, following an optimal-control point of view. We then specialize this idea to the Grassmann manifold and demonstrate that it yields a simple, extensible and easy-to-implement solution to the parametric regression problem. In fact, it allows us to extend the basic geodesic model to (1) a time-warped variant and (2) cubic splines. We demonstrate the utility of the proposed solution on different vision problems, such as shape regression as a function of age, traffic-speed estimation and crowd-counting from surveillance video clips. Most notably, these problems can be conveniently solved within the same framework without any specifically-tailored steps along the processing pipeline.Comment: 14 pages, 11 figure

    Regularization-free estimation in trace regression with symmetric positive semidefinite matrices

    Full text link
    Over the past few years, trace regression models have received considerable attention in the context of matrix completion, quantum state tomography, and compressed sensing. Estimation of the underlying matrix from regularization-based approaches promoting low-rankedness, notably nuclear norm regularization, have enjoyed great popularity. In the present paper, we argue that such regularization may no longer be necessary if the underlying matrix is symmetric positive semidefinite (\textsf{spd}) and the design satisfies certain conditions. In this situation, simple least squares estimation subject to an \textsf{spd} constraint may perform as well as regularization-based approaches with a proper choice of the regularization parameter, which entails knowledge of the noise level and/or tuning. By contrast, constrained least squares estimation comes without any tuning parameter and may hence be preferred due to its simplicity

    A representer theorem for deep kernel learning

    Full text link
    In this paper we provide a finite-sample and an infinite-sample representer theorem for the concatenation of (linear combinations of) kernel functions of reproducing kernel Hilbert spaces. These results serve as mathematical foundation for the analysis of machine learning algorithms based on compositions of functions. As a direct consequence in the finite-sample case, the corresponding infinite-dimensional minimization problems can be recast into (nonlinear) finite-dimensional minimization problems, which can be tackled with nonlinear optimization algorithms. Moreover, we show how concatenated machine learning problems can be reformulated as neural networks and how our representer theorem applies to a broad class of state-of-the-art deep learning methods

    Colour correction using root-polynomial regression

    Get PDF
    • …
    corecore