13 research outputs found

    Accurate geometry modeling of vasculatures using implicit fitting with 2D radial basis functions

    Get PDF
    Accurate vascular geometry modeling is an essential task in computer assisted vascular surgery and therapy. This paper presents a vessel cross-section based implicit vascular modeling technique, which represents a vascular surface as a set of locally fitted implicit surfaces. In the proposed method, a cross-section based technique is employed to extract from each cross-section of the vascular surface a set of points, which are then fitted with an implicit curve represented as 2D radial basis functions. All these implicitly represented cross-section curves are then being considered as 3D cylindrical objects and combined together using a certain partial shape-preserving spline to build a complete vessel branch; different vessel branches are then blended using a extended smooth maximum function to construct the complete vascular tree. Experimental results show that the proposed method can correctly represent the morphology and topology of vascular structures with high level of smoothness. Both qualitative comparison with other methods and quantitative validations to the proposed method have been performed to verify the accuracy and smoothness of the generated vascular geometric models

    Extension aux quadrupĂšdes d'un moteur d'animation 3D de personnages

    Get PDF
    National audienceNowadays, digital animals are very fashionable in videogames or movies, so we need to animate them in a realistic way. Since motion capture techniques are not always suitable, we usually use kinematic animation. Nevertheless, each movement represents a complex task for a skilled 3D animator. Moreover, this work is closely linked with the animal's morphology and with the given environnement ! Hence, our work consists of modifying the animation engine MKM in order to solve these disadvantages. Our version of MKM allows us, in a interactive environment, to blend any kind of movements and affect them to several animals with different morphologies. To achieve that, we define a normalized representation of quadruped skeletons and a generic method based on a deterministic automata, to blend motions. Ground adaptation is then done by using retargeting.En ce moment, les animaux digitaux sont trĂšs Ă  la mode, que ce soit dans le domaine des jeux vidĂ©os ou du cinĂ©ma : il est donc nĂ©cessaire de les animer de maniĂšre rĂ©aliste. Etant donnĂ© que les techniques de captures de motion soit peu adaptĂ©es aux animaux, on utilise gĂ©nĂ©ralement une animation par keyframe. Toutefois, chaque mouvement reprĂ©sente une tĂąche fastidieuse, mĂȘme pour un animateur 3D experimentĂ©. De plus, ce mouvement est fortement dĂ©pendant de la morphologie de l'animal et de l'environnement 3D ! Par consĂ©quent, notre travail consiste Ă  modifier le moteur d'animation MKM dans le but de rĂ©pondre Ă  ses problĂ©matiques. Pour cela, nous proposons une nouvelle reprĂ©sentation normalisĂ©e du squelette de quadrupĂšde et une mĂ©thode gĂ©nĂ©rique, basĂ©e sur des automates deterministes, pour gĂ©nĂ©rer des transitions entre allures. L'adaptation Ă  l'environnement est ensuite faire grĂące au retargetting

    On-line locomotion synthesis for virtual humans

    Get PDF
    Ever since the development of Computer Graphics in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing fascination for Computer Animation. This specific field of Computer Graphics gathers numerous techniques, especially for the animation of characters or virtual humans in movies and video games. To create such high-fidelity animations, a particular interest has been dedicated to motion capture, a technology which allows to record the 3D movement of a live performer. The resulting realism motion is convincing. However, this technique offers little control to animators, as the recorded motion can only be played back. Recently, many advances based on motion capture have been published, concerning slight but precise modifications of an original motion or the parameterization of large motion databases. The challenge consists in combining motion realism with an intuitive on-line motion control, while preserving real-time performances. In the first part of this thesis, we would like to add a brick in the wall of motion parameterization techniques based on motion capture, by introducing a generic motion modeling for locomotion and jump activities. For this purpose, we simplify the motion representation using a statistical method in order to facilitate the elaboration of an efficient parametric model. This model is structured in hierarchical levels, allowing an intuitive motion synthesis with high-level parameters. In addition, we present a space and time normalization process to adapt our model to characters of various sizes. In the second part, we integrate this motion modeling in an animation engine, thus allowing for the generation of a continuous stream of motion for virtual humans. We provide two additional tools to improve the flexibility of our engine. Based on the concept of motion anticipation, we first introduce an on-line method for detecting and enforcing foot-ground constraints. Hence, a straight line walking motion can be smoothly modified to a curved one. Secondly, we propose an approach for the automatic and coherent synthesis of transitions from locomotion to jump (and inversely) motions, by taking into account their respective properties. Finally, we consider the interaction of a virtual human with its environment. Given initial and final conditions set on the locomotion speed and foot positions, we propose a method which computes the corresponding trajectory. To illustrate this method, we propose a case study which mirrors as closely as possible the behavior of a human confronted with an obstacle: at any time, obstacles may be interactively created in front of a moving virtual human. Our method computes a trajectory allowing the virtual human to precisely jump over the obstacle in an on-line manner

    Supplementing Frequency Domain Interpolation Methods for Character Animation

    Get PDF
    The animation of human characters entails difficulties exceeding those met simulating objects, machines or plants. A person's gait is a product of nature affected by mood and physical condition. Small deviations from natural movement are perceived with ease by an unforgiving audience. Motion capture technology is frequently employed to record human movement. Subsequent playback on a skeleton underlying the character being animated conveys many of the subtleties of the original motion. Played-back recordings are of limited value, however, when integration in a virtual environment requires movements beyond those in the motion library, creating a need for the synthesis of new motion from pre-recorded sequences. An existing approach involves interpolation between motions in the frequency domain, with a blending space defined by a triangle network whose vertices represent input motions. It is this branch of character animation which is supplemented by the methods presented in this thesis, with work undertaken in three distinct areas. The first is a streamlined approach to previous work. It provides benefits including an efficiency gain in certain contexts, and a very different perspective on triangle network construction in which they become adjustable and intuitive user-interface devices with an increased flexibility allowing a greater range of motions to be blended than was possible with previous networks. Interpolation-based synthesis can never exhibit the same motion variety as can animation methods based on the playback of rearranged frame sequences. Limitations such as this were addressed by the second phase of work, with the creation of hybrid networks. These novel structures use properties of frequency domain triangle blending networks to seamlessly integrate playback-based animation within them. The third area focussed on was distortion found in both frequency- and time-domain blending. A new technique, single-source harmonic switching, was devised which greatly reduces it, and adds to the benefits of blending in the frequency domain

    A SENSORY-MOTOR LINGUISTIC FRAMEWORK FOR HUMAN ACTIVITY UNDERSTANDING

    Get PDF
    We empirically discovered that the space of human actions has a linguistic structure. This is a sensory-motor space consisting of the evolution of joint angles of the human body in movement. The space of human activity has its own phonemes, morphemes, and sentences. We present a Human Activity Language (HAL) for symbolic non-arbitrary representation of sensory and motor information of human activity. This language was learned from large amounts of motion capture data. Kinetology, the phonology of human movement, finds basic primitives for human motion (segmentation) and associates them with symbols (symbolization). This way, kinetology provides a symbolic representation for human movement that allows synthesis, analysis, and symbolic manipulation. We introduce a kinetological system and propose five basic principles on which such a system should be based: compactness, view-invariance, reproducibility, selectivity, and reconstructivity. We demonstrate the kinetological properties of our sensory-motor primitives. Further evaluation is accomplished with experiments on compression and decompression of motion data. The morphology of a human action relates to the inference of essential parts of movement (morpho-kinetology) and its structure (morpho-syntax). To learn morphemes and their structure, we present a grammatical inference methodology and introduce a parallel learning algorithm to induce a grammar system representing a single action. The algorithm infers components of the grammar system as a subset of essential actuators, a CFG grammar for the language of each component representing the motion pattern performed in a single actuator, and synchronization rules modeling coordination among actuators. The syntax of human activities involves the construction of sentences using action morphemes. A sentence may range from a single action morpheme (nuclear syntax) to a sequence of sets of morphemes. A single morpheme is decomposed into analogs of lexical categories: nouns, adjectives, verbs, and adverbs. The sets of morphemes represent simultaneous actions (parallel syntax) and a sequence of movements is related to the concatenation of activities (sequential syntax). We demonstrate this linguistic framework on real motion capture data from a large scale database containing around 200 different actions corresponding to English verbs associated with voluntary meaningful observable movement

    From motion capture to interactive virtual worlds : towards unconstrained motion-capture algorithms for real-time performance-driven character animation

    Get PDF
    This dissertation takes performance-driven character animation as a representative application and advances motion capture algorithms and animation methods to meet its high demands. Existing approaches have either coarse resolution and restricted capture volume, require expensive and complex multi-camera systems, or use intrusive suits and controllers. For motion capture, set-up time is reduced using fewer cameras, accuracy is increased despite occlusions and general environments, initialization is automated, and free roaming is enabled by egocentric cameras. For animation, increased robustness enables the use of low-cost sensors input, custom control gesture definition is guided to support novice users, and animation expressiveness is increased. The important contributions are: 1) an analytic and differentiable visibility model for pose optimization under strong occlusions, 2) a volumetric contour model for automatic actor initialization in general scenes, 3) a method to annotate and augment image-pose databases automatically, 4) the utilization of unlabeled examples for character control, and 5) the generalization and disambiguation of cyclical gestures for faithful character animation. In summary, the whole process of human motion capture, processing, and application to animation is advanced. These advances on the state of the art have the potential to improve many interactive applications, within and outside virtual reality.Diese Arbeit befasst sich mit Performance-driven Character Animation, insbesondere werden Motion Capture-Algorithmen entwickelt um den hohen Anforderungen dieser Beispielanwendung gerecht zu werden. Existierende Methoden haben entweder eine geringe Genauigkeit und einen eingeschrĂ€nkten Aufnahmebereich oder benötigen teure Multi-Kamera-Systeme, oder benutzen störende Controller und spezielle AnzĂŒge. FĂŒr Motion Capture wird die Setup-Zeit verkĂŒrzt, die Genauigkeit fĂŒr Verdeckungen und generelle Umgebungen erhöht, die Initialisierung automatisiert, und BewegungseinschrĂ€nkung verringert. FĂŒr Character Animation wird die Robustheit fĂŒr ungenaue Sensoren erhöht, Hilfe fĂŒr benutzerdefinierte Gestendefinition geboten, und die AusdrucksstĂ€rke der Animation verbessert. Die wichtigsten BeitrĂ€ge sind: 1) ein analytisches und differenzierbares Sichtbarkeitsmodell fĂŒr Rekonstruktionen unter starken Verdeckungen, 2) ein volumetrisches Konturenmodell fĂŒr automatische Körpermodellinitialisierung in genereller Umgebung, 3) eine Methode zur automatischen Annotation von Posen und Augmentation von Bildern in großen Datenbanken, 4) das Nutzen von Beispielbewegungen fĂŒr Character Animation, und 5) die Generalisierung und Übertragung von zyklischen Gesten fĂŒr genaue Charakteranimation. Es wird der gesamte Prozess erweitert, von Motion Capture bis hin zu Charakteranimation. Die Verbesserungen sind fĂŒr viele interaktive Anwendungen geeignet, innerhalb und außerhalb von virtueller RealitĂ€t

    From motion capture to interactive virtual worlds : towards unconstrained motion-capture algorithms for real-time performance-driven character animation

    Get PDF
    This dissertation takes performance-driven character animation as a representative application and advances motion capture algorithms and animation methods to meet its high demands. Existing approaches have either coarse resolution and restricted capture volume, require expensive and complex multi-camera systems, or use intrusive suits and controllers. For motion capture, set-up time is reduced using fewer cameras, accuracy is increased despite occlusions and general environments, initialization is automated, and free roaming is enabled by egocentric cameras. For animation, increased robustness enables the use of low-cost sensors input, custom control gesture definition is guided to support novice users, and animation expressiveness is increased. The important contributions are: 1) an analytic and differentiable visibility model for pose optimization under strong occlusions, 2) a volumetric contour model for automatic actor initialization in general scenes, 3) a method to annotate and augment image-pose databases automatically, 4) the utilization of unlabeled examples for character control, and 5) the generalization and disambiguation of cyclical gestures for faithful character animation. In summary, the whole process of human motion capture, processing, and application to animation is advanced. These advances on the state of the art have the potential to improve many interactive applications, within and outside virtual reality.Diese Arbeit befasst sich mit Performance-driven Character Animation, insbesondere werden Motion Capture-Algorithmen entwickelt um den hohen Anforderungen dieser Beispielanwendung gerecht zu werden. Existierende Methoden haben entweder eine geringe Genauigkeit und einen eingeschrĂ€nkten Aufnahmebereich oder benötigen teure Multi-Kamera-Systeme, oder benutzen störende Controller und spezielle AnzĂŒge. FĂŒr Motion Capture wird die Setup-Zeit verkĂŒrzt, die Genauigkeit fĂŒr Verdeckungen und generelle Umgebungen erhöht, die Initialisierung automatisiert, und BewegungseinschrĂ€nkung verringert. FĂŒr Character Animation wird die Robustheit fĂŒr ungenaue Sensoren erhöht, Hilfe fĂŒr benutzerdefinierte Gestendefinition geboten, und die AusdrucksstĂ€rke der Animation verbessert. Die wichtigsten BeitrĂ€ge sind: 1) ein analytisches und differenzierbares Sichtbarkeitsmodell fĂŒr Rekonstruktionen unter starken Verdeckungen, 2) ein volumetrisches Konturenmodell fĂŒr automatische Körpermodellinitialisierung in genereller Umgebung, 3) eine Methode zur automatischen Annotation von Posen und Augmentation von Bildern in großen Datenbanken, 4) das Nutzen von Beispielbewegungen fĂŒr Character Animation, und 5) die Generalisierung und Übertragung von zyklischen Gesten fĂŒr genaue Charakteranimation. Es wird der gesamte Prozess erweitert, von Motion Capture bis hin zu Charakteranimation. Die Verbesserungen sind fĂŒr viele interaktive Anwendungen geeignet, innerhalb und außerhalb von virtueller RealitĂ€t

    Computer-Aided Development of Shell Plates

    Get PDF
    Ship hulls and other curved shells, like gas tanks, aircraft bodies, and even clothes and shoes, offer a common difficulty in their manufacturing: it is necessary to produce them from a set of formerly plane elements. These plane elements, the raw materials like plates and fabric pieces, must be curved and assembled together to form the final product. The reverse of the forming process of these curved elements, is the map of the curved surface onto the plane, which is improperly known as development. To develop a surface, in a proper sense, is to unfold it onto the plane without stretching or bulging. This is not possible with all kinds of shapes, such as spherical and saddle surfaces. Some common developable surfaces are the conical and cylindrical ones. To form a non-developable shell requires much more work than to form an equivalent shell of developable shape. This increases the costs, the processing times and the defect content. Nevertheless, the fluid dynamists and the other designers are not always free to use developable shapes in their concepts; therefore, a pragmatic approach to the construction of curved shells has to cope with non-developable surfaces. These subjects are chiefly of an advanced mathematic nature, and the required background is too widely spread in the bibliography. Therefore the necessary mathematical results are compiled and presented in Chapter 2 - The Mathematics of Developable Surfaces, providing for a unified view of the concepts, the symbols and the nomenclature. Since the advent of the digital computer, the increasing availability of computing power enabled new methods for surface development and for developable surface definition. By examining and comparing the methods reported in the literature, CHAPTER 3 - Plate Development and Developable Surfaces provides a broad view of the surface development issues, along with the developability conditions and the technologies for the definition of developable surfaces. Given the absence of developability conditions in some areas of the shell, a number of methodologies are reported which produce a plate map onto the plane. In Chapter 4 - Concept and Implementation of an Algorithm, the concept and the implementation of a new development algorithm is described, analysed and applied to example cases. By geodesicaly mapping the surface onto the plane, this method avoids the implementation difficulties of both non- developable surfaces, and developable surfaces with ruling lines aligned in any direction. Therefore, the slightly non-developable plates, commonly found in actual ship hulls, are easily accommodated by this process, working as a map onto the plane. In Chapter 5 - Industrial Application of the Improper Geodesic Map, the user interface of the method is presented. The method provides information about the surface developability and fairness, which assists the user in the decision to develop or otherwise to take corrective measures, like re-fairing or editing of seams and butts. Results obtained from analytical plates, and comparisons with results from both a 1/10-scale electrostatic development jig, and a commercial software package, validate the method. Other results, obtained from actual ship plates, are also presented, further confirming the good accuracy of the method's developments and its good behaviour when processing non-developable plates. This method is in current use, as part of a shipyard system
    corecore