377 research outputs found

    Planar Cooperative Extremum Seeking with Guaranteed Convergence Using A Three-Robot Formation

    Full text link
    In this paper, a combined formation acquisition and cooperative extremum seeking control scheme is proposed for a team of three robots moving on a plane. The extremum seeking task is to find the maximizer of an unknown two-dimensional function on the plane. The function represents the signal strength field due to a source located at maximizer, and is assumed to be locally concave around maximizer and monotonically decreasing in distance to the source location. Taylor expansions of the field function at the location of a particular lead robot and the maximizer are used together with a gradient estimator based on signal strength measurements of the robots to design and analyze the proposed control scheme. The proposed scheme is proven to exponentially and simultaneously (i) acquire the specified geometric formation and (ii) drive the lead robot to a specified neighborhood disk around maximizer, whose radius depends on the specified desired formation size as well as the norm bounds of the Hessian of the field function. The performance of the proposed control scheme is evaluated using a set of simulation experiments.Comment: Presented at the 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, US

    Modeling and adaptive tracking for stochastic nonholonomic constrained mechanical systems

    Get PDF
    This paper is devoted to the problem of modeling and trajectory tracking for stochastic nonholonomic dynamic systems in the presence of unknown parameters. Prior to tracking controller design, the rigorous derivation of stochastic nonholonomic dynamic model is given. By reasonably introducing so-called internal state vector, a reduced dynamic model, which is suitable for control design, is proposed. Based on the backstepping technique in vector form, an adaptive tracking controller is then derived, guaranteeing that the mean square of the tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The efficiency of the controller is demonstrated by a mechanics system: a vertical mobile wheel in random vibration environment

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Control of Real Mobile Robot Using Artificial Intelligence Technique

    Get PDF
    An eventual objective of mobile robotics research is to bestow the robot with high cerebral skill, of which navigation in an unfamiliar environment can be succeeded by using on‐line sensory information, which is essentially starved of humanoid intermediation. This research emphases on mechanical design of real mobile robot, its kinematic & dynamic model analysis and selection of AI technique based on perception, cognition, sensor fusion, path scheduling and analysis, which has to be implemented in robot for achieving integration of different preliminary robotic behaviors (e.g. obstacle avoidance, wall and edge following, escaping dead end and target seeking). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimization problem and thus can be analyzed and solved using AI techniques. The optimization of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A set of linguistic fuzzy rules are developed to implement expert knowledge under various situations. Both of Mamdani and Takagi-Sugeno fuzzy model are employed in control algorithm for experimental purpose. Neural network has also been used to enhance and optimize the outcome of controller, e.g. by introducing a learning ability. The cohesive framework combining both fuzzy inference system and neural network enabled mobile robot to generate reasonable trajectories towards the target. An authenticity checking has been done by performing simulation as well as experimental results which showed that the mobile robot is capable of avoiding stationary obstacles, escaping traps, and reaching the goal efficiently

    A Practical Fuzzy Controller with Q-learning Approach for the Path Tracking of a Walking-aid Robot

    Get PDF
    [[abstract]]This study tackles the path tracking problem of a prototype walking-aid (WAid) robot which features the human-robot interactive navigation. A practical fuzzy controller is proposed for the path tracking control under reinforcement learning ability. The inputs to the designed fuzzy controller are the error distance and the error angle between the current and the desired position and orientation, respectively. The controller outputs are the voltages applied to the left- and right-wheel motors. A heuristic fuzzy control with the Sugeno-type rules is then designed based on a model-free approach. The consequent part of each fuzzy control rule is designed with the aid of Q-learning approach. The design approach of the controller is presented in detail, and effectiveness of the controller is demonstrated by hardware implementation and experimental results under human-robot interaction environment. The results also show that the proposed path tracking control methods can be easily applied in various wheeled mobile robots.[[conferencetype]]國際[[conferencedate]]20140914~20140917[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Nagoya, Japa

    Contact aware robust semi-autonomous teleoperation of mobile manipulators

    Get PDF
    In the context of human-robot collaboration, cooperation and teaming, the use of mobile manipulators is widespread on applications involving unpredictable or hazardous environments for humans operators, like space operations, waste management and search and rescue on disaster scenarios. Applications where the manipulator's motion is controlled remotely by specialized operators. Teleoperation of manipulators is not a straightforward task, and in many practical cases represent a common source of failures. Common issues during the remote control of manipulators are: increasing control complexity with respect the mechanical degrees of freedom; inadequate or incomplete feedback to the user (i.e. limited visualization or knowledge of the environment); predefined motion directives may be incompatible with constraints or obstacles imposed by the environment. In the latter case, part of the manipulator may get trapped or blocked by some obstacle in the environment, failure that cannot be easily detected, isolated nor counteracted remotely. While control complexity can be reduced by the introduction of motion directives or by abstraction of the robot motion, the real-time constraint of the teleoperation task requires the transfer of the least possible amount of data over the system's network, thus limiting the number of physical sensors that can be used to model the environment. Therefore, it is of fundamental to define alternative perceptive strategies to accurately characterize different interaction with the environment without relying on specific sensory technologies. In this work, we present a novel approach for safe teleoperation, that takes advantage of model based proprioceptive measurement of the robot dynamics to robustly identify unexpected collisions or contact events with the environment. Each identified collision is translated on-the-fly into a set of local motion constraints, allowing the exploitation of the system redundancies for the computation of intelligent control laws for automatic reaction, without requiring human intervention and minimizing the disturbance of the task execution (or, equivalently, the operator efforts). More precisely, the described system consist in two different building blocks. The first, for detecting unexpected interactions with the environment (perceptive block). The second, for intelligent and autonomous reaction after the stimulus (control block). The perceptive block is responsible of the contact event identification. In short, the approach is based on the claim that a sensorless collision detection method for robot manipulators can be extended to the field of mobile manipulators, by embedding it within a statistical learning framework. The control deals with the intelligent and autonomous reaction after the contact or impact with the environment occurs, and consist on an motion abstraction controller with a prioritized set of constrains, where the highest priority correspond to the robot reconfiguration after a collision is detected; when all related dynamical effects have been compensated, the controller switch again to the basic control mode

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Robust Model Predictive Control for Linear Parameter Varying Systems along with Exploration of its Application in Medical Mobile Robots

    Get PDF
    This thesis seeks to develop a robust model predictive controller (MPC) for Linear Parameter Varying (LPV) systems. LPV models based on input-output display are employed. We aim to improve robust MPC methods for LPV systems with an input-output display. This improvement will be examined from two perspectives. First, the system must be stable in conditions of uncertainty (in signal scheduling or due to disturbance) and perform well in both tracking and regulation problems. Secondly, the proposed method should be practical, i.e., it should have a reasonable computational load and not be conservative. Firstly, an interpolation approach is utilized to minimize the conservativeness of the MPC. The controller is calculated as a linear combination of a set of offline predefined control laws. The coefficients of these offline controllers are derived from a real-time optimization problem. The control gains are determined to ensure stability and increase the terminal set. Secondly, in order to test the system's robustness to external disturbances, a free control move was added to the control law. Also, a Recurrent Neural Network (RNN) algorithm is applied for online optimization, showing that this optimization method has better speed and accuracy than traditional algorithms. The proposed controller was compared with two methods (robust MPC and MPC with LPV model based on input-output) in reference tracking and disturbance rejection scenarios. It was shown that the proposed method works well in both parts. However, two other methods could not deal with the disturbance. Thirdly, a support vector machine was introduced to identify the input-output LPV model to estimate the output. The estimated model was compared with the actual nonlinear system outputs, and the identification was shown to be effective. As a consequence, the controller can accurately follow the reference. Finally, an interpolation-based MPC with free control moves is implemented for a wheeled mobile robot in a hospital setting, where an RNN solves the online optimization problem. The controller was compared with a robust MPC and MPC-LPV in reference tracking, disturbance rejection, online computational load, and region of attraction. The results indicate that our proposed method surpasses and can navigate quickly and reliably while avoiding obstacles

    Navigational Path Analysis of Mobile Robot in Various Environments

    Get PDF
    This dissertation describes work in the area of an autonomous mobile robot. The objective is navigation of mobile robot in a real world dynamic environment avoiding structured and unstructured obstacles either they are static or dynamic. The shapes and position of obstacles are not known to robot prior to navigation. The mobile robot has sensory recognition of specific objects in the environments. This sensory-information provides local information of robots immediate surroundings to its controllers. The information is dealt intelligently by the robot to reach the global objective (the target). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimisation problem and thus can be analyzed and solved using AI techniques. The optimisation of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A successful way of structuring the navigation task deals with the issues of individual behaviour design and action coordination of the behaviours. The navigation objective is addressed using fuzzy logic, neural network, adaptive neuro-fuzzy inference system and different other AI technique.The research also addresses distributed autonomous systems using multiple robot
    corecore