1,904 research outputs found

    Smooth quasi-developable surfaces bounded by smooth curves

    Full text link
    Computing a quasi-developable strip surface bounded by design curves finds wide industrial applications. Existing methods compute discrete surfaces composed of developable lines connecting sampling points on input curves which are not adequate for generating smooth quasi-developable surfaces. We propose the first method which is capable of exploring the full solution space of continuous input curves to compute a smooth quasi-developable ruled surface with as large developability as possible. The resulting surface is exactly bounded by the input smooth curves and is guaranteed to have no self-intersections. The main contribution is a variational approach to compute a continuous mapping of parameters of input curves by minimizing a function evaluating surface developability. Moreover, we also present an algorithm to represent a resulting surface as a B-spline surface when input curves are B-spline curves.Comment: 18 page

    How to Walk Your Dog in the Mountains with No Magic Leash

    Full text link
    We describe a O(logn)O(\log n )-approximation algorithm for computing the homotopic \Frechet distance between two polygonal curves that lie on the boundary of a triangulated topological disk. Prior to this work, algorithms were known only for curves on the Euclidean plane with polygonal obstacles. A key technical ingredient in our analysis is a O(logn)O(\log n)-approximation algorithm for computing the minimum height of a homotopy between two curves. No algorithms were previously known for approximating this parameter. Surprisingly, it is not even known if computing either the homotopic \Frechet distance, or the minimum height of a homotopy, is in NP

    Interpolation of surfaces with asymptotic curves in Euclidean 3-space

    Full text link
    In this paper, we investigate the interpolation of surfaces which are obtained from an isoasymptotic curve in 3D-Euclidean space. We prove that there exist a unique C0 C^0 -Hermite surface interpolation related to an isoasymptotic curve under some special conditions on the marching scale functions. Finally, we present some examples and plot their graphs

    Strain field in doubly curved surface

    Get PDF
    This paper presents algorithm for development of structural and continuous curved surface into a planar and non planar (radial) shape in 3D space. The development process is modeled by application of strain in certain plane from the curved surface to its planar development. A doubly curved surface has been generated for the purpose of technical studies. Important features of the approach include formulations of the coefficients of first fundamental form, second fundamental form, Gaussian curvature and Serret Frenet curve. The approximate strain field is obtained by solving a constrained linear and nonlinear problem in algorithm
    corecore