74,509 research outputs found

    MPC of constrained discrete-time linear periodic systems — A framework for asynchronous control: Strong feasibility, stability and optimality via periodic invariance

    Get PDF
    State-feedback model predictive control (MPC) of discrete-time linear periodic systems with time-dependent state and input dimensions is considered. The states and inputs are subject to periodically time-dependent, hard, convex, polyhedral constraints. First, periodic controlled and positively invariant sets are characterized, and a method to determine the maximum periodic controlled and positively invariant sets is derived. The proposed periodic controlled invariant sets are then employed in the design of least-restrictive strongly feasible reference-tracking MPC problems. The proposed periodic positively invariant sets are employed in combination with well-known results on optimal unconstrained periodic linear-quadratic regulation (LQR) to yield constrained periodic LQR control laws that are stabilizing and optimal. One motivation for systems with time-dependent dimensions is efficient control law synthesis for discrete-time systems with asynchronous inputs, for which a novel modeling framework resulting in low dimensional models is proposed. The presented methods are applied to a multirate nano-positioning system

    Stochastic MPC for Controlling the Average Constraint Violation for Periodic Linear System with Additive Disturbance

    Get PDF
    This paper deals with stochastic model predictive control of constrained discrete-time periodic linear systems. Control inputs are subject to periodically time-varying polytopic constraints with possibly time-dependent state and input dimensions. A stochastic constraint is instead enforced on the system state process imposing a bound on the average over time of state constraint violations. Disturbances are additive, bounded and described by a periodically time-dependent probabilistic distribution. The aim of this paper is to develop a receding horizon control scheme which enforces recursive feasibility for the closed-loop state process. The effectiveness of the proposed algorithm is finally shown through a simulation study on a building climate control case

    Pole Assignment With Improved Control Performance by Means of Periodic Feedback

    Get PDF
    This technical note is concerned with the pole placement of continuous-time linear time-invariant (LTI) systems by means of LQ suboptimal periodic feedback. It is well-known that there exist infinitely many generalized sampled-data hold functions (GSHF) for any controllable LTI system to place the modes of its discrete-time equivalent model at prescribed locations. Among all such GSHFs, this technical note aims to find the one which also minimizes a given LQ performance index. To this end, the GSHF being sought is written as the sum of a particular GSHF and a homogeneous one. The particular GSHF can be readily obtained using the conventional pole-placement techniques. The homogeneous GSHF, on the other hand, is expressed as a linear combination of a finite number of functions such as polynomials, sinusoidals, etc. The problem of finding the optimal coefficients of this linear combination is then formulated as a linear matrix inequality (LMI) optimization. The procedure is illustrated by a numerical example

    Stabilization of decentralized control systems by means of periodic feedback

    Get PDF
    This paper deals with structurally constrained periodic control design for interconnected systems. It is assumed that the system is linear time-invariant (LTI), observable and controllable, and that its modes are distinct and nonzero. It is shown that the notions of a quotient fixed mode (QFM) and a structured decentralized fixed mode (SDFM) are equivalent for this class of systems. Then, it is proved that if the system is decentrally stabilizable, then one candidate for the decentralized stabilizing controller is a time-varying one consisting of a decentralized LTI discrete-time compensator and a zero-order hold. More specifically, the non-quotient fixed modes of the system will be eliminated via sampling for almost all sampling periods, while any QFM will still remain a fixed mode. The results obtained are ultimately extended to the case when the system has some repeated modes, none of which is a DFM

    Guaranteeing Input Tracking For Constrained Systems: Theory and Application to Demand Response

    Full text link
    A method for certifying exact input trackability for constrained discrete time linear systems is introduced in this paper. A signal is assumed to be drawn from a reference set and the system must track this signal with a linear combination of its inputs. Using methods inspired from robust model predictive control, the proposed approach certifies the ability of a system to track any reference drawn from a polytopic set on a finite time horizon by solving a linear program. Optimization over a parameterization of the set of reference signals is discussed, and particular instances of parameterization of this set that result in a convex program are identified, allowing one to find the largest set of trackable signals of some class. Infinite horizon feasibility of the methods proposed is obtained through use of invariant sets, and an implicit description of such an invariant set is proposed. These results are tailored for the application of power consumption tracking for loads, where the operator of the load needs to certify in advance his ability to fulfill some requirement set by the network operator. An example of a building heating system illustrates the results.Comment: Technical Not

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences
    corecore