24,797 research outputs found

    Discounted continuous-time constrained Markov decision processes in Polish spaces

    Full text link
    This paper is devoted to studying constrained continuous-time Markov decision processes (MDPs) in the class of randomized policies depending on state histories. The transition rates may be unbounded, the reward and costs are admitted to be unbounded from above and from below, and the state and action spaces are Polish spaces. The optimality criterion to be maximized is the expected discounted rewards, and the constraints can be imposed on the expected discounted costs. First, we give conditions for the nonexplosion of underlying processes and the finiteness of the expected discounted rewards/costs. Second, using a technique of occupation measures, we prove that the constrained optimality of continuous-time MDPs can be transformed to an equivalent (optimality) problem over a class of probability measures. Based on the equivalent problem and a so-called wˉ\bar{w}-weak convergence of probability measures developed in this paper, we show the existence of a constrained optimal policy. Third, by providing a linear programming formulation of the equivalent problem, we show the solvability of constrained optimal policies. Finally, we use two computable examples to illustrate our main results.Comment: Published in at http://dx.doi.org/10.1214/10-AAP749 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Risk Aversion in Finite Markov Decision Processes Using Total Cost Criteria and Average Value at Risk

    Full text link
    In this paper we present an algorithm to compute risk averse policies in Markov Decision Processes (MDP) when the total cost criterion is used together with the average value at risk (AVaR) metric. Risk averse policies are needed when large deviations from the expected behavior may have detrimental effects, and conventional MDP algorithms usually ignore this aspect. We provide conditions for the structure of the underlying MDP ensuring that approximations for the exact problem can be derived and solved efficiently. Our findings are novel inasmuch as average value at risk has not previously been considered in association with the total cost criterion. Our method is demonstrated in a rapid deployment scenario, whereby a robot is tasked with the objective of reaching a target location within a temporal deadline where increased speed is associated with increased probability of failure. We demonstrate that the proposed algorithm not only produces a risk averse policy reducing the probability of exceeding the expected temporal deadline, but also provides the statistical distribution of costs, thus offering a valuable analysis tool

    Risk-Sensitive Reinforcement Learning: A Constrained Optimization Viewpoint

    Full text link
    The classic objective in a reinforcement learning (RL) problem is to find a policy that minimizes, in expectation, a long-run objective such as the infinite-horizon discounted or long-run average cost. In many practical applications, optimizing the expected value alone is not sufficient, and it may be necessary to include a risk measure in the optimization process, either as the objective or as a constraint. Various risk measures have been proposed in the literature, e.g., mean-variance tradeoff, exponential utility, the percentile performance, value at risk, conditional value at risk, prospect theory and its later enhancement, cumulative prospect theory. In this article, we focus on the combination of risk criteria and reinforcement learning in a constrained optimization framework, i.e., a setting where the goal to find a policy that optimizes the usual objective of infinite-horizon discounted/average cost, while ensuring that an explicit risk constraint is satisfied. We introduce the risk-constrained RL framework, cover popular risk measures based on variance, conditional value-at-risk and cumulative prospect theory, and present a template for a risk-sensitive RL algorithm. We survey some of our recent work on this topic, covering problems encompassing discounted cost, average cost, and stochastic shortest path settings, together with the aforementioned risk measures in a constrained framework. This non-exhaustive survey is aimed at giving a flavor of the challenges involved in solving a risk-sensitive RL problem, and outlining some potential future research directions
    • …
    corecore