19,340 research outputs found

    Exhaustive and Efficient Constraint Propagation: A Semi-Supervised Learning Perspective and Its Applications

    Full text link
    This paper presents a novel pairwise constraint propagation approach by decomposing the challenging constraint propagation problem into a set of independent semi-supervised learning subproblems which can be solved in quadratic time using label propagation based on k-nearest neighbor graphs. Considering that this time cost is proportional to the number of all possible pairwise constraints, our approach actually provides an efficient solution for exhaustively propagating pairwise constraints throughout the entire dataset. The resulting exhaustive set of propagated pairwise constraints are further used to adjust the similarity matrix for constrained spectral clustering. Other than the traditional constraint propagation on single-source data, our approach is also extended to more challenging constraint propagation on multi-source data where each pairwise constraint is defined over a pair of data points from different sources. This multi-source constraint propagation has an important application to cross-modal multimedia retrieval. Extensive results have shown the superior performance of our approach.Comment: The short version of this paper appears as oral paper in ECCV 201

    Optimal Clustering: Genetic Constrained K-Means and Linear Programming Algorithms

    Get PDF
    Methods for determining clusters of data under- specified constraints have recently gained popularity. Although general constraints may be used, we focus on clustering methods with the constraint of a minimal cluster size. In this dissertation, we propose two constrained k-means algorithms: Linear Programming Algorithm (LPA) and Genetic Constrained K-means Algorithm (GCKA). Linear Programming Algorithm modifies the k-means algorithm into a linear programming problem with constraints requiring that each cluster have m or more subjects. In order to achieve an acceptable clustering solution, we run the algorithm with a large number of random sets of initial seeds, and choose the solution with minimal Root Mean Squared Error (RMSE) as our final solution for a given data set. We evaluate LPA with both generic data and simulated data and the results indicate that LPA can obtain a reasonable clustering solution. Genetic Constrained K-Means Algorithm (GCKA) hybridizes the Genetic Algorithm with a constrained k-means algorithm. We define Selection Operator, Mutation Operator and Constrained K-means operator. Using finite Markov chain theory, we prove that the GCKA converges in probability to the global optimum. We test the algorithm with several datasets. The analysis shows that we can achieve a good clustering solution by carefully choosing parameters such as population size, mutation probability and generation. We also propose a Bi-Nelder algorithm to search for an appropriate cluster number with minimal RMSE

    Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering

    Get PDF
    Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n×K fuzzy memberships matrix P is found by least-squares approximation of the off-diagonal elements of Q by inner products of rows of P. By contrast, kernelized fuzzy c-means is not least-squares and requires an additional fuzziness parameter. The aim is to popularize additive fuzzy clustering by interpreting it as a latent class model, whereby the elements of Q are modeled as the probability that two individuals share the same class on the basis of the assignment probability matrix P. Two new algorithms are provided, a brute force genetic algorithm (differential evolution) and an iterative row-wise quadratic programming algorithm of which the latter is the more effective. Simulations showed that (1) the method usually has a unique solution, except in special cases, (2) both algorithms reached this solution from random restarts and (3) the number of clusters can be well estimated by AIC. Additive fuzzy clustering is computationally efficient and combines attractive features of both the vector model and the cluster mode
    • …
    corecore