183 research outputs found

    Non-Uniform Rational B-Splines and Rational Bezier Triangles for Isogeometric Analysis of Structural Applications

    Full text link
    Isogeometric Analysis (IGA) is a major advancement in computational analysis that bridges the gap between a computer-aided design (CAD) model, which is typically constructed using Non-Uniform Rational B-splines (NURBS), and a computational model that traditionally uses Lagrange polynomials to represent the geometry and solution variables. In IGA, the same shape functions that are used in CAD are employed for analysis. The direct manipulation of CAD data eliminates approximation errors that emanate from the process of converting the geometry from CAD to Finite Element Analysis (FEA). As a result, IGA allows the exact geometry to be represented at the coarsest level and maintained throughout the analysis process. While IGA was initially introduced to streamline the design and analysis process, this dissertation shows that IGA can also provide improved computational results for complex and highly nonlinear problems in structural mechanics. This dissertation addresses various problems in structural mechanics in the context of IGA, with the use of NURBS and rational BĂ©zier triangles for the description of the parametric and physical spaces. The approaches considered here show that a number of important properties (e.g., high-order smoothness, geometric exactness, reduced number of degrees of freedom, and increased flexibility in discretization) can be achieved, leading to improved numerical solutions. Specifically, using B-splines and a layer-based discretization, a distributed plasticity isogeometric frame model is formulated to capture the spread of plasticity in large-deformation frames. The modeling approach includes an adaptive analysis where the structure of interest is initially modeled with coarse mesh and knots are inserted based on the yielding information at the quadrature points. It is demonstrated that improvement on efficiency and convergence rates is attained. With NURBS, an isogeometric rotation-free multi-layered plate formulation is developed based on a layerwise deformation theory. The derivation assumes a separate displacement field expansion within each layer, and considers transverse displacement component as C0-continuous at dissimilar material interfaces, which is enforced via knot repetition. The separate integration of the in-plane and through-thickness directions allows to capture the complete 3D stresses in a 2D setting. The proposed method is used to predict the behavior of advanced materials such as laminated composites, and the results show advantages in efficiency and accuracy. To increase the flexibility in discretizing complex geometries, rational BĂ©zier triangles for domain triangulation is studied. They are further coupled with a Delaunay-based feature-preserving discretization algorithm for static bending and free vibration analysis of Kirchhoff plates. Lagrange multipliers are employed to explicitly impose high-order continuity constraints and the augmented system is solved iteratively without increasing the matrix size. The resulting discretization is geometrically exact, admits small geometric features, and constitutes C1-continuity. The feature-preserving rational BĂ©zier triangles are further applied to smeared damage modeling of quasi-brittle materials. Due to the ability of Lagrange multipliers to raise global continuity to any desired order, the implicit fourth- and sixth-order gradient damage models are analyzed. The inclusion of higher-order terms in the nonlocal Taylor expansion improves solution accuracy. A local refinement algorithm that resolves marked regions with high resolution while keeping the resulting mesh conforming and well-conditioned is also utilized to improve efficiency. The outcome is a unified modeling framework where the feature-preserving discretization is able to capture the damage initiation and early-stage propagation, and the local refinement technique can then be applied to adaptively refine the mesh in the direction of damage propagation.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147668/1/ningliu_1.pd

    Desenvolvimento de códigos de simulação numérica estrutural com base em isogeometric analysis (IGA)

    Get PDF
    Mestrado em Engenharia MecânicaIn the present day most product development industries uses the Finite Element Method (FEM) for structural analysis. Designers model the product geometries using Computer-Aided Design (CAD) software, the geometries are then fitted for analysis, by the analysts, with a mesh approximation that inevitably results in loss of accuracy. Achieving the best geometry description for complex components can be a complex task and it can take a lot of time. Considering this drawback, a new method was developed which takes advantages of curve representation tools and uses them as bases for analysis. Aiming for no loss of geometrical precision, this new method has been called "Isogeometric Analysis" (IGA). The smoothness of Spline representations used in Isogeometric Analysis can be useful for a particular branch of structural analysis which is the analysis of plates and shells. The classic thin plate theory developed by Gustav Kirchhoff requires a geometry description with C1 continuity between elements which is normally defined by high order polynomial functions, which typically represents a problem with the piecewise Lagrangian shape functions used in conventional FEM. The present work explores parametric descriptions used as basis for Isogeometric Analysis, such as Bézier curves, B-splines and NURBS, taking advantage of its smoothness to develop formulations for thin plate elements. The 4-node rectangular derived by Melosh, O. Zienkiewicz and Y. Chung called MCZ thin plate element based on Kirchhoff assumptions, was the starting point to build up to a NURBS-based thin plate element. MCZ thin plate elements, NURBS-based thin plate elements (with different order geometries) and Abaqus commercial software shell elements are evaluated by means of classical plate benchmarks comparing the elements convergences and overall performance. It can be shown that the proposed NURBS-based formulation is reliable for the analysis of thin structures.Nos dias de hoje a maioria da indústria de desenvolvimento do produto utiliza o Método dos Elementos Finitos (MEF) na análise estrutural. Os desenhistas modelam o produto através de ferramentas de Computer-Aided Design (CAD). As geometrias são depois ajustadas para a análise pelos analistas que constroem uma aproximação através de uma malha de elementos finitos, o que inevitavelmente resulta numa perda de precisão geométrica. Para conseguir a melhor aproximação à geometria original para componentes complexos o processo pode ser complicado e pode consumir muito tempo. Considerando esta desvantagem foi desenvolvido um novo método que tira partido da descrição geométrica das ferramentas de desenho e utiliza as funções base das curvas para analise, com o objectivo de não haver perda de precisão geométrica, este novo método tem o nome de “Análise Isogeométrica” (IGA). A suavidade das geometrias Splines usadas na análise isogeometrica pode ser muito útil num ramo particular da análise estrutural, no estudo das placas e cascas. A teoria clássica de análise de placas finas de Kirchhoff requer uma descrição geométrica que tenha continuidade C1 entre elementos, que é normalmente definida por polinómios de ordem elevada, que são tipicamente um problema para as funções de forma Lagrangeanas usadas em MEF. O presente trabalho explora as descrições geométricas utilizadas como funções de forma para a análise isogeométrica como as curvas de Bézier, as B-splines e as NURBS, tirando vantagem da facilidade de estas conseguirem a requerida continuidade entre elementos para criar elementos de placas finas com as funções de base NURBS como funções de forma. É utilizado o elemento de placa fina MCZ desenvolvido por Melosh, O. Zienkiewicz e Y. Chung com base nas premissas de Kirchhoff como ponto de partida para desenvolver o elemento com base em NURBS. No fim os elementos de placas finas MCZ, os elementos com funções de base NURBS (com geometrias de diferentes ordens) e elementos do tipo casca do software comercial Abaqus são avaliados através de uma série de diferentes problemas clássicos de placas, comparando a convergência e o desempenho global. É possivel ver que a formulação proposta é fidedigna na análise de estruturas de placa fina

    Control of Curvature Extrema in Curve Modeling

    Get PDF
    We present a method for constructing almost-everywhere curvature-continuous curves that interpolate a list of control points and have local maxima of curvature only at the control points. Our premise is that salient features of the curve should occur only at control points to avoid the creation of features unintended by the artist. While many artists prefer to use interpolated control points, the creation of artifacts, such as loops and cusps, away from control points has limited the use of these types of curves. By enforcing the maximum curvature property, loops and cusps cannot be created unless the artist intends to create such features. To create these curves, we analyze the curvature monotonicity of quadratic, rational quadratic and cubic curves and develop a framework to connect such curve primitives with curvature continuity. We formulate an energy to encode the desired properties in a boxed constrained optimization and provide a fast method of estimating the solution through a numerical optimization. The optimized curve can serve as a real-time curve modeling tool in art design applications

    Controlling the interpolation of NURBS curves and surfaces

    Get PDF
    The primary focus of this thesis is to determine the best methods for controlling the interpolation of NURBS curves and surfaces. The various factors that affect the quality of the interpolant are described, and existing methods for controlling them are reviewed. Improved methods are presented for calculating the parameter values, derivative magnitudes, data point spacing and twist vectors, with the aim of producing high quality interpolants with minimal data requirements. A new technique for obtaining the parameter values and derivative magnitudes is evaluated, which constructs a C1^1 cubic spline with orthogonal first and second derivatives at specified parametric locations. When this data is used to create a C2^2 spline, the resulting interpolant is superior to those constructed using existing parameterisation and derivative magnitude estimation methods. Consideration is given to the spacing of data points, which has a significant impact on the quality of the interpolant. Existing methods are shown to produce poor results with curves that are not circles. Three new methods are proposed that significantly reduce the positional error between the interpolant and original geometry. For constrained surface interpolation, twist vectors must be estimated. A method is proposed that builds on the Adini method, and is shown to have improved error characteristics. In numerical tests, the new method consistently outperforms Adini. Interpolated surfaces are often required to join together smoothly along their boundaries. The constraints for joining surfaces with parametric and geometric continuity are discussed, and the problem of joining NN patches to form an NN-sided region is considered. It is shown that regions with odd NN can be joined with G1^1 continuity, but those with even NN or requiring G2^2 continuity can only be obtained for specific geometries

    Distributed cooperative trajectory generation for multiple autonomous vehicles using Pythagorean Hodograph BĂ©zier curves

    Get PDF
    This dissertation presents a framework for multi-vehicle trajectory generation that enables efficient computation of sets of feasible, collision-free trajectories for teams of autonomous vehicles executing cooperative missions with common objectives. Existing methods for multi-vehicle trajectory generation generally rely on discretization in time or space and, therefore, ensuring safe separation between the paths comes at the expense of an increase in computational complexity. On the contrary, the proposed framework is based on a three-dimensional geometric-dynamic approach that uses continuous BĂ©zier curves with Pythagorean hodographs, a class of polynomial functions with attractive mathematical properties and a collection of highly efficient computational procedures associated with them. The use of these curves is critical to generate cooperative trajectories that are guaranteed to satisfy minimum separation distances, a key feature from a safety standpoint. By the differential flatness property of the dynamic system, the dynamic constraints can be expressed in terms of the trajectories and, therefore, in terms of BĂ©zier polynomials. This allows the proposed framework to efficiently evaluate and, hence, observe the dynamic constraints of the vehicles, and satisfy mission-specific assignments such as simultaneous arrival at predefined locations. The dissertation also addresses the problem of distributing the computation of the trajectories over the vehicles, in order to prevent a single point of failure, inherently present in a centralized approach. The formulated cooperative trajectory-generation framework results in a semi-infinite programming problem, that falls under the class of nonsmooth optimization problems. The proposed distributed algorithm combines the bundle method, a widely used solver for nonsmooth optimization problems, with a distributed nonlinear programming method. In the latter, a distributed formulation is obtained by introducing local estimates of the vector of optimization variables and leveraging on a particular structure, imposed on the local minimizer of an equivalent centralized optimization problem

    Extensions to OpenGL for CAGD.

    Get PDF
    Many computer graphic API’s, including OpenGL, emphasize modeling with rectangular patches, which are especially useful in Computer Aided Geomeric Design (CAGD). However, not all shapes are rectangular; some are triangular or more complex. This paper extends the OpenGL library to support the modeling of triangular patches, Coons patches, and Box-splines patches. Compared with the triangular patch created from degenerate rectangular Bezier patch with the existing functions provided by OpenGL, the triangular Bezier patches can be used in certain design situations and allow designers to achieve high-quality results that are less CPU intense and require less storage space. The addition of Coons patches and Box splines to the OpenGL library also give it more functionality. Both patch types give CAGD users more flexibility in designing surfaces. A library for all three patch types was developed as an addition to OpenGL

    Splines for damage and fracture in solids

    Get PDF
    This thesis addresses different aspects of numerical fracture mechanics and spline technology for analysis. An energy-based arc-length control for physically non-linear problems is proposed. It switches between an internal energy-based and a dissipation-based arc-length method. The arc-length control allows to trace an equilibrium path with multiple snap-through and/or snap-back phenomena and only requires two parameters. Phase field models for brittle and cohesive fracture are numerically assessed. The impact of different parameters and boundary conditions on the phase field model for brittle fracture is investigated. It is demonstrated that Γ-convergence is not attained numerically for the phase field model for brittle fracture and that the phase field model for cohesive fracture does not pass a two-dimensional patch test when using an unstructured mesh. The properties of the Bézier extraction operator for T-splines are exploited for the determination of linear dependencies, partition of unity properties, nesting behaviour and local refinement. Unstructured T-spline meshes with extraordinary points are modified such that the blending functions fulfil the partition of unity property and possess a higher continuity. Bézier extraction for Powell-Sabin B-splines is introduced. Different spline technologies are compared when solving Kirchhoff-Love plate theory on a disc with simply supported and clamped boundary conditions. Powell-Sabin B-splines are utilised for smeared and discrete approaches to fracture. Due to the higher continuity of Powell-Sabin B-splines, the implicit fourth order gradient damage model for quasi-brittle materials can be solved and stresses can be computed directly at the crack tip when considering the cohesive zone method

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation
    • …
    corecore