598 research outputs found

    Rank-1 Constrained Multichannel Wiener Filter for Speech Recognition in Noisy Environments

    Get PDF
    Multichannel linear filters, such as the Multichannel Wiener Filter (MWF) and the Generalized Eigenvalue (GEV) beamformer are popular signal processing techniques which can improve speech recognition performance. In this paper, we present an experimental study on these linear filters in a specific speech recognition task, namely the CHiME-4 challenge, which features real recordings in multiple noisy environments. Specifically, the rank-1 MWF is employed for noise reduction and a new constant residual noise power constraint is derived which enhances the recognition performance. To fulfill the underlying rank-1 assumption, the speech covariance matrix is reconstructed based on eigenvectors or generalized eigenvectors. Then the rank-1 constrained MWF is evaluated with alternative multichannel linear filters under the same framework, which involves a Bidirectional Long Short-Term Memory (BLSTM) network for mask estimation. The proposed filter outperforms alternative ones, leading to a 40% relative Word Error Rate (WER) reduction compared with the baseline Weighted Delay and Sum (WDAS) beamformer on the real test set, and a 15% relative WER reduction compared with the GEV-BAN method. The results also suggest that the speech recognition accuracy correlates more with the Mel-frequency cepstral coefficients (MFCC) feature variance than with the noise reduction or the speech distortion level.Comment: for Computer Speech and Languag

    A Framework for Speech Enhancement with Ad Hoc Microphone Arrays

    Get PDF

    Multichannel Speech Enhancement

    Get PDF

    Noise Reduction with Microphone Arrays for Speaker Identification

    Get PDF
    The presence of acoustic noise in audio recordings is an ongoing issue that plagues many applications. This ambient background noise is difficult to reduce due to its unpredictable nature. Many single channel noise reduction techniques exist but are limited in that they may distort the desired speech signal due to overlapping spectral content of the speech and noise. It is therefore of interest to investigate the use of multichannel noise reduction algorithms to further attenuate noise while attempting to preserve the speech signal of interest. Specifically, this thesis looks to investigate the use of microphone arrays in conjunction with multichannel noise reduction algorithms to aid aiding in speaker identification. Recording a speaker in the presence of acoustic background noise ultimately limits the performance and confidence of speaker identification algorithms. In situations where it is impossible to control the noise environment where the speech sample is taken, noise reduction algorithms must be developed and applied to clean the speech signal in order to give speaker identification software a chance at a positive identification. Due to the limitations of single channel techniques, it is of interest to see if spatial information provided by microphone arrays can be exploited to aid in speaker identification. This thesis provides an exploration of several time domain multichannel noise reduction techniques including delay sum beamforming, multi-channel Wiener filtering, and Spatial-Temporal Prediction filtering. Each algorithm is prototyped and filter performance is evaluated using various simulations and experiments. A three-dimensional noise model is developed to simulate and compare the performance of the above methods and experimental results of three data collections are presented and analyzed. The algorithms are compared and recommendations are given for the use of each technique. Finally, ideas for future work are discussed to improve performance and implementation of these multichannel algorithms. Possible applications for this technology include audio surveillance, identity verification, video chatting, conference calling and sound source localization
    • …
    corecore