3,526 research outputs found

    Face Clustering: Representation and Pairwise Constraints

    Full text link
    Clustering face images according to their identity has two important applications: (i) grouping a collection of face images when no external labels are associated with images, and (ii) indexing for efficient large scale face retrieval. The clustering problem is composed of two key parts: face representation and choice of similarity for grouping faces. We first propose a representation based on ResNet, which has been shown to perform very well in image classification problems. Given this representation, we design a clustering algorithm, Conditional Pairwise Clustering (ConPaC), which directly estimates the adjacency matrix only based on the similarity between face images. This allows a dynamic selection of number of clusters and retains pairwise similarity between faces. ConPaC formulates the clustering problem as a Conditional Random Field (CRF) model and uses Loopy Belief Propagation to find an approximate solution for maximizing the posterior probability of the adjacency matrix. Experimental results on two benchmark face datasets (LFW and IJB-B) show that ConPaC outperforms well known clustering algorithms such as k-means, spectral clustering and approximate rank-order. Additionally, our algorithm can naturally incorporate pairwise constraints to obtain a semi-supervised version that leads to improved clustering performance. We also propose an k-NN variant of ConPaC, which has a linear time complexity given a k-NN graph, suitable for large datasets.Comment: This second version is the same as TIFS version. Some experiment results are different from v1 because we correct the protocol

    Pairwise Constraint Propagation on Multi-View Data

    Full text link
    This paper presents a graph-based learning approach to pairwise constraint propagation on multi-view data. Although pairwise constraint propagation has been studied extensively, pairwise constraints are usually defined over pairs of data points from a single view, i.e., only intra-view constraint propagation is considered for multi-view tasks. In fact, very little attention has been paid to inter-view constraint propagation, which is more challenging since pairwise constraints are now defined over pairs of data points from different views. In this paper, we propose to decompose the challenging inter-view constraint propagation problem into semi-supervised learning subproblems so that they can be efficiently solved based on graph-based label propagation. To the best of our knowledge, this is the first attempt to give an efficient solution to inter-view constraint propagation from a semi-supervised learning viewpoint. Moreover, since graph-based label propagation has been adopted for basic optimization, we develop two constrained graph construction methods for interview constraint propagation, which only differ in how the intra-view pairwise constraints are exploited. The experimental results in cross-view retrieval have shown the promising performance of our inter-view constraint propagation

    Dominant Sets for "Constrained" Image Segmentation

    Full text link
    Image segmentation has come a long way since the early days of computer vision, and still remains a challenging task. Modern variations of the classical (purely bottom-up) approach, involve, e.g., some form of user assistance (interactive segmentation) or ask for the simultaneous segmentation of two or more images (co-segmentation). At an abstract level, all these variants can be thought of as "constrained" versions of the original formulation, whereby the segmentation process is guided by some external source of information. In this paper, we propose a new approach to tackle this kind of problems in a unified way. Our work is based on some properties of a family of quadratic optimization problems related to dominant sets, a well-known graph-theoretic notion of a cluster which generalizes the concept of a maximal clique to edge-weighted graphs. In particular, we show that by properly controlling a regularization parameter which determines the structure and the scale of the underlying problem, we are in a position to extract groups of dominant-set clusters that are constrained to contain predefined elements. In particular, we shall focus on interactive segmentation and co-segmentation (in both the unsupervised and the interactive versions). The proposed algorithm can deal naturally with several type of constraints and input modality, including scribbles, sloppy contours, and bounding boxes, and is able to robustly handle noisy annotations on the part of the user. Experiments on standard benchmark datasets show the effectiveness of our approach as compared to state-of-the-art algorithms on a variety of natural images under several input conditions and constraints.Comment: arXiv admin note: text overlap with arXiv:1608.0064

    Volumetric Super-Resolution of Multispectral Data

    Full text link
    Most multispectral remote sensors (e.g. QuickBird, IKONOS, and Landsat 7 ETM+) provide low-spatial high-spectral resolution multispectral (MS) or high-spatial low-spectral resolution panchromatic (PAN) images, separately. In order to reconstruct a high-spatial/high-spectral resolution multispectral image volume, either the information in MS and PAN images are fused (i.e. pansharpening) or super-resolution reconstruction (SRR) is used with only MS images captured on different dates. Existing methods do not utilize temporal information of MS and high spatial resolution of PAN images together to improve the resolution. In this paper, we propose a multiframe SRR algorithm using pansharpened MS images, taking advantage of both temporal and spatial information available in multispectral imagery, in order to exceed spatial resolution of given PAN images. We first apply pansharpening to a set of multispectral images and their corresponding PAN images captured on different dates. Then, we use the pansharpened multispectral images as input to the proposed wavelet-based multiframe SRR method to yield full volumetric SRR. The proposed SRR method is obtained by deriving the subband relations between multitemporal MS volumes. We demonstrate the results on Landsat 7 ETM+ images comparing our method to conventional techniques.Comment: arXiv admin note: text overlap with arXiv:1705.0125

    All the people around me: face discovery in egocentric photo-streams

    Full text link
    Given an unconstrained stream of images captured by a wearable photo-camera (2fpm), we propose an unsupervised bottom-up approach for automatic clustering appearing faces into the individual identities present in these data. The problem is challenging since images are acquired under real world conditions; hence the visible appearance of the people in the images undergoes intensive variations. Our proposed pipeline consists of first arranging the photo-stream into events, later, localizing the appearance of multiple people in them, and finally, grouping various appearances of the same person across different events. Experimental results performed on a dataset acquired by wearing a photo-camera during one month, demonstrate the effectiveness of the proposed approach for the considered purpose.Comment: 5 pages, 3 figures, accepted in IEEE International Conference on Image Processing (ICIP 2017

    End-to-end Face Detection and Cast Grouping in Movies Using Erd\H{o}s-R\'{e}nyi Clustering

    Full text link
    We present an end-to-end system for detecting and clustering faces by identity in full-length movies. Unlike works that start with a predefined set of detected faces, we consider the end-to-end problem of detection and clustering together. We make three separate contributions. First, we combine a state-of-the-art face detector with a generic tracker to extract high quality face tracklets. We then introduce a novel clustering method, motivated by the classic graph theory results of Erd\H{o}s and R\'enyi. It is based on the observations that large clusters can be fully connected by joining just a small fraction of their point pairs, while just a single connection between two different people can lead to poor clustering results. This suggests clustering using a verification system with very few false positives but perhaps moderate recall. We introduce a novel verification method, rank-1 counts verification, that has this property, and use it in a link-based clustering scheme. Finally, we define a novel end-to-end detection and clustering evaluation metric allowing us to assess the accuracy of the entire end-to-end system. We present state-of-the-art results on multiple video data sets and also on standard face databases.Comment: to appear in ICCV 2017 (spotlight

    A review of EO image information mining

    Full text link
    We analyze the state of the art of content-based retrieval in Earth observation image archives focusing on complete systems showing promise for operational implementation. The different paradigms at the basis of the main system families are introduced. The approaches taken are analyzed, focusing in particular on the phases after primitive feature extraction. The solutions envisaged for the issues related to feature simplification and synthesis, indexing, semantic labeling are reviewed. The methodologies for query specification and execution are analyzed

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Deep Clustering With Intra-class Distance Constraint for Hyperspectral Images

    Full text link
    The high dimensionality of hyperspectral images often results in the degradation of clustering performance. Due to the powerful ability of deep feature extraction and non-linear feature representation, the clustering algorithm based on deep learning has become a hot research topic in the field of hyperspectral remote sensing. However, most deep clustering algorithms for hyperspectral images utilize deep neural networks as feature extractor without considering prior knowledge constraints that are suitable for clustering. To solve this problem, we propose an intra-class distance constrained deep clustering algorithm for high-dimensional hyperspectral images. The proposed algorithm constrains the feature mapping procedure of the auto-encoder network by intra-class distance so that raw images are transformed from the original high-dimensional space to the low-dimensional feature space that is more conducive to clustering. Furthermore, the related learning process is treated as a joint optimization problem of deep feature extraction and clustering. Experimental results demonstrate the intense competitiveness of the proposed algorithm in comparison with state-of-the-art clustering methods of hyperspectral images

    Beyond Pixels: A Comprehensive Survey from Bottom-up to Semantic Image Segmentation and Cosegmentation

    Full text link
    Image segmentation refers to the process to divide an image into nonoverlapping meaningful regions according to human perception, which has become a classic topic since the early ages of computer vision. A lot of research has been conducted and has resulted in many applications. However, while many segmentation algorithms exist, yet there are only a few sparse and outdated summarizations available, an overview of the recent achievements and issues is lacking. We aim to provide a comprehensive review of the recent progress in this field. Covering 180 publications, we give an overview of broad areas of segmentation topics including not only the classic bottom-up approaches, but also the recent development in superpixel, interactive methods, object proposals, semantic image parsing and image cosegmentation. In addition, we also review the existing influential datasets and evaluation metrics. Finally, we suggest some design flavors and research directions for future research in image segmentation.Comment: submitted to Elsevier Journal of Visual Communications and Image Representatio
    • …
    corecore