108 research outputs found

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    STARNet: Sensor Trustworthiness and Anomaly Recognition via Approximated Likelihood Regret for Robust Edge Autonomy

    Full text link
    Complex sensors such as LiDAR, RADAR, and event cameras have proliferated in autonomous robotics to enhance perception and understanding of the environment. Meanwhile, these sensors are also vulnerable to diverse failure mechanisms that can intricately interact with their operation environment. In parallel, the limited availability of training data on complex sensors also affects the reliability of their deep learning-based prediction flow, where their prediction models can fail to generalize to environments not adequately captured in the training set. To address these reliability concerns, this paper introduces STARNet, a Sensor Trustworthiness and Anomaly Recognition Network designed to detect untrustworthy sensor streams that may arise from sensor malfunctions and/or challenging environments. We specifically benchmark STARNet on LiDAR and camera data. STARNet employs the concept of approximated likelihood regret, a gradient-free framework tailored for low-complexity hardware, especially those with only fixed-point precision capabilities. Through extensive simulations, we demonstrate the efficacy of STARNet in detecting untrustworthy sensor streams in unimodal and multimodal settings. In particular, the network shows superior performance in addressing internal sensor failures, such as cross-sensor interference and crosstalk. In diverse test scenarios involving adverse weather and sensor malfunctions, we show that STARNet enhances prediction accuracy by approximately 10% by filtering out untrustworthy sensor streams. STARNet is publicly available at \url{https://github.com/sinatayebati/STARNet}

    Model-Guided Data-Driven Optimization and Control for Internal Combustion Engine Systems

    Get PDF
    The incorporation of electronic components into modern Internal Combustion, IC, engine systems have facilitated the reduction of fuel consumption and emission from IC engine operations. As more mechanical functions are being replaced by electric or electronic devices, the IC engine systems are becoming more complex in structure. Sophisticated control strategies are called in to help the engine systems meet the drivability demands and to comply with the emission regulations. Different model-based or data-driven algorithms have been applied to the optimization and control of IC engine systems. For the conventional model-based algorithms, the accuracy of the applied system models has a crucial impact on the quality of the feedback system performance. With computable analytic solutions and a good estimation of the real physical processes, the model-based control embedded systems are able to achieve good transient performances. However, the analytic solutions of some nonlinear models are difficult to obtain. Even if the solutions are available, because of the presence of unavoidable modeling uncertainties, the model-based controllers are designed conservatively

    Time-Optimal Quantum Driving by Variational Circuit Learning

    Full text link
    The simulation of quantum dynamics on a digital quantum computer with parameterized circuits has widespread applications in fundamental and applied physics and chemistry. In this context, using the hybrid quantum-classical algorithm, combining classical optimizers and quantum computers, is a competitive strategy for solving specific problems. We put forward its use for optimal quantum control. We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number of qubits. We then use circuit learning based on gradient descent to work out the intrinsic connection between the control phase transition and the quantum speed limit imposed by unitary dynamics. We further discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit. The combination of digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.Comment: 10 pages, 8 figure

    Advances in System Identification and Stochastic Optimization

    Get PDF
    This work studies the framework of systems with subsystems, which has numerous practical applications, including system reliability estimation, sensor networks, and object detection. Consider a stochastic system composed of multiple subsystems, where the outputs are distributed according to many of the most common distributions, such as Gaussian, exponential and multinomial. In Chapter 1, we aim to identify the parameters of the system based on the structural knowledge of the system and the integration of data independently collected from multiple sources. Using the principles of maximum likelihood estimation, we provide the formal conditions for the convergence of the estimates to the true full system and subsystem parameters. The asymptotic normalities for the estimates and their connections to Fisher information matrices are also established, which are useful in providing the asymptotic or finite-sample confidence bounds. The maximum likelihood approach is then connected to general stochastic optimization via the recursive least squares estimation in Chapter 2. For stochastic optimization, we consider minimizing a loss function with only noisy function measurements and propose two general-purpose algorithms. In Chapter 3, the mixed simultaneous perturbation stochastic approximation (MSPSA) is introduced, which is designed for mixed variable (mixture of continuous and discrete variables) problems. The proposed MSPSA bridges the gap of dealing with mixed variables in the SPSA family, and unifies the framework of simultaneous perturbation as both the standard SPSA and discrete SPSA can now be deemed as two special cases of MSPSA. The almost sure convergence and rate of convergence of the MSPSA iterates are also derived. The convergence results reveal that the finite-sample bound of MSPSA is identical to discrete SPSA when the problem contains only discrete variables, and the asymptotic bound of MSPSA has the same order of magnitude as SPSA when the problem contains only continuous variables. In Chapter 4, the complex-step SPSA (CS-SPSA) is introduced, which utilizes the complex-valued perturbations to improve the efficiency of the standard SPSA. We prove that the CS-SPSA iterates converge almost surely to the optimum and achieve an accelerated convergence rate, which is faster than the standard convergence rate in derivative-free stochastic optimization algorithms

    Data-driven Methodologies and Applications in Urban Mobility

    Get PDF
    The world is urbanizing at an unprecedented rate where urbanization goes from 39% in 1980 to 58% in 2019 (World Bank, 2019). This poses more and more transportation demand and pressure on the already at or over-capacity old transport infrastructure, especially in urban areas. Along the same timeline, more data generated as a byproduct of daily activity are being collected via the advancement of the internet of things, and computers are getting more and more powerful. These are shown by the statistics such as 90% of the world’s data is generated within the last two years and IBM’s computer is now processing at the speed of 120,000 GPS points per second. Thus, this dissertation discusses the challenges and opportunities arising from the growing demand for urban mobility, particularly in cities with outdated infrastructure, and how to capitalize on the unprecedented growth in data in solving these problems by ways of data-driven transportation-specific methodologies. The dissertation identifies three primary challenges and/or opportunities, which are (1) optimally locating dynamic wireless charging to promote the adoption of electric vehicles, (2) predicting dynamic traffic state using an enormously large dataset of taxi trips, and (3) improving the ride-hailing system with carpooling, smart dispatching, and preemptive repositioning. The dissertation presents potential solutions/methodologies that have become available only recently thanks to the extraordinary growth of data and computers with explosive power, and these methodologies are (1) bi-level optimization planning frameworks for locating dynamic wireless charging facilities, (2) Traffic Graph Convolutional Network for dynamic urban traffic state estimation, and (3) Graph Matching and Reinforcement Learning for the operation and management of mixed autonomous electric taxi fleets. These methodologies are then carefully calibrated, methodically scrutinized under various performance metrics and procedures, and validated with previous research and ground truth data, which is gathered directly from the real world. In order to bridge the gap between scientific discoveries and practical applications, the three methodologies are applied to the case study of (1) Montgomery County, MD, (2) the City of New York, and (3) the City of Chicago and from which, real-world implementation are suggested. This dissertation’s contribution via the provided methodologies, along with the continual increase in data, have the potential to significantly benefit urban mobility and work toward a sustainable transportation system

    Optimization with Discrete Simultaneous Perturbation Stochastic Approximation Using Noisy Loss Function Measurements

    Get PDF
    Discrete stochastic optimization considers the problem of minimizing (or maximizing) loss functions defined on discrete sets, where only noisy measurements of the loss functions are available. The discrete stochastic optimization problem is widely applicable in practice, and many algorithms have been considered to solve this kind of optimization problem. Motivated by the efficient algorithm of simultaneous perturbation stochastic approximation (SPSA) for continuous stochastic optimization problems, we introduce the middle point discrete simultaneous perturbation stochastic approximation (DSPSA) algorithm for the stochastic optimization of a loss function defined on a p-dimensional grid of points in Euclidean space. We show that the sequence generated by DSPSA converges to the optimal point under some conditions. Consistent with other stochastic approximation methods, DSPSA formally accommodates noisy measurements of the loss function. We also show the rate of convergence analysis of DSPSA by solving an upper bound of the mean squared error of the generated sequence. In order to compare the performance of DSPSA with the other algorithms such as the stochastic ruler algorithm (SR) and the stochastic comparison algorithm (SC), we set up a bridge between DSPSA and the other two algorithms by comparing the probability in a big-O sense of not achieving the optimal solution. We show the theoretical and numerical comparison results of DSPSA, SR, and SC. In addition, we consider an application of DSPSA towards developing optimal public health strategies for containing the spread of influenza given limited societal resources
    • …
    corecore