805 research outputs found

    Overlay networks for smart grids

    Get PDF

    Denial of service mitigation approach for IPv6-enabled smart object networks

    Full text link
    Denial of service (DoS) attacks can be defined as any third-party action aiming to reduce or eliminate a network's capability to perform its expected functions. Although there are several standard techniques in traditional computing that mitigate the impact of some of the most common DoS attacks, this still remains a very important open problem to the network security community. DoS attacks are even more troublesome in smart object networks because of two main reasons. First, these devices cannot support the computational overhead required to implement many of the typical counterattack strategies. Second, low traffic rates are enough to drain sensors' battery energy making the network inoperable in short times. To realize the Internet of Things vision, it is necessary to integrate the smart objects into the Internet. This integration is considered an exceptional opportunity for Internet growth but, also, a security threat, because more attacks, including DoS, can be conducted. For these reasons, the prevention of DoS attacks is considered a hot topic in the wireless sensor networks scientific community. In this paper, an approach based on 6LowPAN neighbor discovery protocol is proposed to mitigate DoS attacks initiated from the Internet, without adding additional overhead on the 6LoWPAN sensor devices.This work has been partially supported by the Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, and by National Funding from the FCT - Fundacao para a Ciencia e Tecnologia through the Pest-OE/EEI/LA0008/2011.Oliveira, LML.; Rodrigues, JJPC.; De Sousa, AF.; Lloret, J. (2013). Denial of service mitigation approach for IPv6-enabled smart object networks. Concurrency and Computation: Practice and Experience. 25(1):129-142. doi:10.1002/cpe.2850S129142251Gershenfeld, N., Krikorian, R., & Cohen, D. (2004). The Internet of Things. Scientific American, 291(4), 76-81. doi:10.1038/scientificamerican1004-76Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393-422. doi:10.1016/s1389-1286(01)00302-4Karl, H., & Willig, A. (2005). Protocols and Architectures for Wireless Sensor Networks. doi:10.1002/0470095121IEEE Std 802.15.4-2006 Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specificationsfor low-rate wireless personal area networks (LR-WPANs) 2006ZigBee Alliance ZigBee Specification 2007WirelessHARThomepage 2012 http://www.hartcomm.org/Hui, J. W., & Culler, D. E. (2008). Extending IP to Low-Power, Wireless Personal Area Networks. IEEE Internet Computing, 12(4), 37-45. doi:10.1109/mic.2008.79Kushalnagar N Montenegro G Schumacher C IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals 2007Montenegro G Kushalnagar N Hui J Culler D Transmission of IPv6 Packets over IEEE 802.15.4 Networks 2007Shelby Z Thubert P Hui J Chakrabarti S Bormann C Nordmark E 6LoWPAN Neighbor Discovery 2011Zhou, L., Chao, H.-C., & Vasilakos, A. V. (2011). Joint Forensics-Scheduling Strategy for Delay-Sensitive Multimedia Applications over Heterogeneous Networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358-1367. doi:10.1109/jsac.2011.110803Roman, R., & Lopez, J. (2009). Integrating wireless sensor networks and the internet: a security analysis. Internet Research, 19(2), 246-259. doi:10.1108/10662240910952373Wang, Y., Attebury, G., & Ramamurthy, B. (2006). A survey of security issues in wireless sensor networks. IEEE Communications Surveys & Tutorials, 8(2), 2-23. doi:10.1109/comst.2006.315852Xiaojiang Du, & Hsiao-Hwa Chen. (2008). Security in wireless sensor networks. IEEE Wireless Communications, 15(4), 60-66. doi:10.1109/mwc.2008.4599222Pelechrinis, K., Iliofotou, M., & Krishnamurthy, S. V. (2011). Denial of Service Attacks in Wireless Networks: The Case of Jammers. IEEE Communications Surveys & Tutorials, 13(2), 245-257. doi:10.1109/surv.2011.041110.00022Zhou, L., Wang, X., Tu, W., Muntean, G., & Geller, B. (2010). Distributed scheduling scheme for video streaming over multi-channel multi-radio multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 28(3), 409-419. doi:10.1109/jsac.2010.100412Lin, K., Lai, C.-F., Liu, X., & Guan, X. (2010). Energy Efficiency Routing with Node Compromised Resistance in Wireless Sensor Networks. Mobile Networks and Applications, 17(1), 75-89. doi:10.1007/s11036-010-0287-xLi, H., Lin, K., & Li, K. (2011). Energy-efficient and high-accuracy secure data aggregation in wireless sensor networks. Computer Communications, 34(4), 591-597. doi:10.1016/j.comcom.2010.02.026Oliveira, L. M. L., de Sousa, A. F., & Rodrigues, J. J. P. C. (2011). Routing and mobility approaches in IPv6 over LoWPAN mesh networks. International Journal of Communication Systems, 24(11), 1445-1466. doi:10.1002/dac.1228Narten T Nordmark E Simpson W Soliman H Neighbor Discovery for IP version 6 (IPv6) 2007Singh H Beebee W Nordmark E IPv6 Subnet Model: The Relationship between Links and Subnet Prefixes 2010Roman, R., Lopez, J., & Gritzalis, S. (2008). Situation awareness mechanisms for wireless sensor networks. IEEE Communications Magazine, 46(4), 102-107. doi:10.1109/mcom.2008.4481348Sakarindr, P., & Ansari, N. (2007). Security services in group communications over wireless infrastructure, mobile ad hoc, and wireless sensor networks. IEEE Wireless Communications, 14(5), 8-20. doi:10.1109/mwc.2007.4396938Tsao T Alexander R Dohler M Daza V Lozano A A Security Framework for Routing over Low Power and Lossy Networks 2009Karlof C Wagner D Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures First IEEE International Workshop on Sensor Network Protocols and Applications 2003 113 127 10.1109/SNPA.2003.1203362Hui J Thubert P Compression Format for IPv6 Datagrams in 6LoWPAN Networks 2009Elaine Shi, & Perrig, A. (2004). Designing Secure Sensor Networks. IEEE Wireless Communications, 11(6), 38-43. doi:10.1109/mwc.2004.1368895Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325-349. doi:10.1016/j.adhoc.2003.09.01

    The role of the RPL routing protocol for smart grid communications

    Get PDF
    Advanced communication/networking technologies should be integrated in next-generation power systems (a.k.a. smart grids) to improve their resilience, efficiency, adaptability, and sustainability. Many believe that the smart grid communication infrastructure will emerge from the interconnection of a large number of small-scale networks organized into a hierarchical architecture covering larger geographic areas. In this article, first we carry out a thorough analysis of the key components of the smart grid communication architecture, discussing the different network topologies and communication technologies that could be employed. Special emphasis is given to the advanced metering infrastructure, which will be used to interconnect the smart meters deployed at customers\u27 premises with data aggregators and control centers. The design of scalable, reliable, and efficient networking solutions for AMI systems is an important research problem because these networks are composed of thousands of resource-constrained embedded devices usually interconnected with communication technologies that can provide only low-bandwidth and unreliable links. The IPv6 Routing Protocol for Low Power and Lossy Networks was recently standardized by the IETF to specifically meet the requirements of typical AMI applications. In this article we present a thorough overview of the protocol, and we critically analyze its advantages and potential limits in AMI applications. We also conduct a performance evaluation of RPL using a Contiki-based prototype of the RPL standard and a network emulator. Our results indicate that although average performance may appear reasonable for AMI networks, a few RPL nodes may suffer from severe unreliability issues and experience high packet loss rates due to the selection of suboptimal paths with highly unreliable links

    Building blocks for the internet of things

    Get PDF

    Models and Methods for Network Selection and Balancing in Heterogeneous Scenarios

    Get PDF
    The outbreak of 5G technologies for wireless communications can be considered a response to the need for widespread coverage, in terms of connectivity and bandwidth, to guarantee broadband services, such as streaming or on-demand programs offered by the main television networks or new generation services based on augmented and virtual reality (AR / VR). The purpose of the study conducted for this thesis aims to solve two of the main problems that will occur with the outbreak of 5G, that is, the search for the best possible connectivity, in order to offer users the resources necessary to take advantage of the new generation services, and multicast as required by the eMBMS. The aim of the thesis is the search for innovative algorithms that will allow to obtain the best connectivity to offer users the resources necessary to use the 5G services in a heterogeneous scenario. Study UF that allows you to improve the search for the best candidate network and to achieve a balance that allows you to avoid congestion of the chosen networks. To achieve these two important focuses, I conducted a study on the main mathematical methods that made it possible to select the network based on QoS parameters based on the type of traffic made by users. A further goal was to improve the computational computation performance they present. Furthermore, I carried out a study in order to obtain an innovative algorithm that would allow the management of multicast. The algorithm that has been implemented responds to the needs present in the eMBMS, in realistic scenarios
    corecore