3,088 research outputs found

    A comprehensive comparison of comparative RNA structure prediction approaches

    Get PDF
    BACKGROUND: An increasing number of researchers have released novel RNA structure analysis and prediction algorithms for comparative approaches to structure prediction. Yet, independent benchmarking of these algorithms is rarely performed as is now common practice for protein-folding, gene-finding and multiple-sequence-alignment algorithms. RESULTS: Here we evaluate a number of RNA folding algorithms using reliable RNA data-sets and compare their relative performance. CONCLUSIONS: We conclude that comparative data can enhance structure prediction but structure-prediction-algorithms vary widely in terms of both sensitivity and selectivity across different lengths and homologies. Furthermore, we outline some directions for future research

    A fast algorithm for the constrained multiple sequence alignment problem

    Get PDF
    Given n strings S1, S2, ..., Sn, and a pattern string P, the constrained multiple sequence alignment (CMSA) problem is to find an optimal multiple alignment of S1, S2, ..., Sn such that the alignment contains P, i.e. in the alignment matrix there exists a sequence of columns each entirely composed of symbol P[k] for every k, where P[k] is the kth symbol in P, 1 ≤ k ≤ |P|, and in the sequence, a column containing P[i] appears before the column containing P[j] for all i,j, i < j. The problem is motivated from the problem of comparing multiple sequences that share a common structure, or sequence pattern. There are O(2ns1s2...snr)-time dynamic programming algorithms for the problem, where s1,s2, ...,sn and r are, respectively, the lengths of the input strings and the pattern string. Feasibility of these algorithms in practice is limited when the number of sequences is large, or the sequences are long because of the impractically long time required by these algorithms. We present a new algorithm with worst-case time complexity also O(2ns1s2...snr), but the algorithm avoids redundant computations in existing dynamic programming solutions. Experiments on both randomly generated strings and real data show that this algorithm is much faster than the existing algorithms. We present an analysis that explains the speed-up obtained in our experiments by our algorithm over the naive dynamic programming algorithm for constrained multiple sequence alignment of protein sequences. The speed-up is more significant when pattern is long, or n is large. For example in the case of constrained pairwise sequence alignment (the CMSA problem with n=2) when the pattern is sufficiently long for strings S1 and S2, the asymptotic time complexity is observed to be O(s1s2) instead of O(s1s2r). Main ideas in our algorithm can also be used in other constrained sequence alignment problems

    Constrained Longest Common Subsequence Computing Algorithms in Practice

    Get PDF
    The problem of finding a constrained longest common subsequence (CLCS) for the sequences A and B with respect to sequence P was introduced recently. Its goal is to find a longest subsequence C of A and B such that P is a subsequence of C. There are several algorithms solving the CLCS problem, but there is no real experimental comparison of them. The paper has two aims. Firstly, we propose an improvement to the algorithms by Chin et al. and Deorowicz based on an entry-exit points technique by He and Arslan. Secondly, we compare experimentally the existing algorithms for solving the CLCS problem

    RNA structure prediction from evolutionary patterns of nucleotide composition

    Get PDF
    Structural elements in RNA molecules have a distinct nucleotide composition, which changes gradually over evolutionary time. We discovered certain features of these compositional patterns that are shared between all RNA families. Based on this information, we developed a structure prediction method that evaluates candidate structures for a set of homologous RNAs on their ability to reproduce the patterns exhibited by biological structures. The method is named SPuNC for ‘Structure Prediction using Nucleotide Composition’. In a performance test on a diverse set of RNA families we demonstrate that the SPuNC algorithm succeeds in selecting the most realistic structures in an ensemble. The average accuracy of top-scoring structures is significantly higher than the average accuracy of all ensemble members (improvements of more than 20% observed). In addition, a consensus structure that includes the most reliable base pairs gleaned from a set of top-scoring structures is generally more accurate than a consensus derived from the full structural ensemble. Our method achieves better accuracy than existing methods on several RNA families, including novel riboswitches and ribozymes. The results clearly show that nucleotide composition can be used to reveal the quality of RNA structures and thus the presented technique should be added to the set of prediction tools

    RSEARCH: Finding homologs of single structured RNA sequences

    Get PDF
    BACKGROUND: For many RNA molecules, secondary structure rather than primary sequence is the evolutionarily conserved feature. No programs have yet been published that allow searching a sequence database for homologs of a single RNA molecule on the basis of secondary structure. RESULTS: We have developed a program, RSEARCH, that takes a single RNA sequence with its secondary structure and utilizes a local alignment algorithm to search a database for homologous RNAs. For this purpose, we have developed a series of base pair and single nucleotide substitution matrices for RNA sequences called RIBOSUM matrices. RSEARCH reports the statistical confidence for each hit as well as the structural alignment of the hit. We show several examples in which RSEARCH outperforms the primary sequence search programs BLAST and SSEARCH. The primary drawback of the program is that it is slow. The C code for RSEARCH is freely available from our lab's website. CONCLUSION: RSEARCH outperforms primary sequence programs in finding homologs of structured RNA sequences

    An Efficient Dynamic Programming Algorithm for the Generalized LCS Problem with Multiple Substring Exclusion Constrains

    Full text link
    In this paper, we consider a generalized longest common subsequence problem with multiple substring exclusion constrains. For the two input sequences XX and YY of lengths nn and mm, and a set of dd constrains P={P1,...,Pd}P=\{P_1,...,P_d\} of total length rr, the problem is to find a common subsequence ZZ of XX and YY excluding each of constrain string in PP as a substring and the length of ZZ is maximized. The problem was declared to be NP-hard\cite{1}, but we finally found that this is not true. A new dynamic programming solution for this problem is presented in this paper. The correctness of the new algorithm is proved. The time complexity of our algorithm is O(nmr)O(nmr).Comment: arXiv admin note: substantial text overlap with arXiv:1301.718

    A Search for Energy Minimized Sequences of Proteins

    Get PDF
    In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10-7. In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function

    Noncoding RNA gene detection using comparative sequence analysis

    Get PDF
    BACKGROUND: Noncoding RNA genes produce transcripts that exert their function without ever producing proteins. Noncoding RNA gene sequences do not have strong statistical signals, unlike protein coding genes. A reliable general purpose computational genefinder for noncoding RNA genes has been elusive. RESULTS: We describe a comparative sequence analysis algorithm for detecting novel structural RNA genes. The key idea is to test the pattern of substitutions observed in a pairwise alignment of two homologous sequences. A conserved coding region tends to show a pattern of synonymous substitutions, whereas a conserved structural RNA tends to show a pattern of compensatory mutations consistent with some base-paired secondary structure. We formalize this intuition using three probabilistic "pair-grammars": a pair stochastic context free grammar modeling alignments constrained by structural RNA evolution, a pair hidden Markov model modeling alignments constrained by coding sequence evolution, and a pair hidden Markov model modeling a null hypothesis of position-independent evolution. Given an input pairwise sequence alignment (e.g. from a BLASTN comparison of two related genomes) we classify the alignment into the coding, RNA, or null class according to the posterior probability of each class. CONCLUSIONS: We have implemented this approach as a program, QRNA, which we consider to be a prototype structural noncoding RNA genefinder. Tests suggest that this approach detects noncoding RNA genes with a fair degree of reliability
    corecore