1,586 research outputs found

    Unsupervised Learning of Artistic Styles with Archetypal Style Analysis

    Get PDF
    In this paper, we introduce an unsupervised learning approach to automatically discover, summarize, and manipulate artistic styles from large collections of paintings. Our method is based on archetypal analysis, which is an unsupervised learning technique akin to sparse coding with a geometric interpretation. When applied to deep image representations from a collection of artworks, it learns a dictionary of archetypal styles, which can be easily visualized. After training the model, the style of a new image, which is characterized by local statistics of deep visual features, is approximated by a sparse convex combination of archetypes. This enables us to interpret which archetypal styles are present in the input image, and in which proportion. Finally, our approach allows us to manipulate the coefficients of the latent archetypal decomposition, and achieve various special effects such as style enhancement, transfer, and interpolation between multiple archetypes.Comment: Accepted at NIPS 2018, Montr\'eal, Canad

    Towards Reliable Image Outpainting: Learning Structure-Aware Multimodal Fusion with Depth Guidance

    Full text link
    Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose a reliable image outpainting task, introducing the sparse depth from LiDARs to extrapolate authentic RGB scenes. The large field view of LiDARs allows it to serve for data enhancement and further multimodal tasks. Concretely, we propose a Depth-Guided Outpainting Network to model different feature representations of two modalities and learn the structure-aware cross-modal fusion. And two components are designed: 1) The Multimodal Learning Module produces unique depth and RGB feature representations from the perspectives of different modal characteristics. 2) The Depth Guidance Fusion Module leverages the complete depth modality to guide the establishment of RGB contents by progressive multimodal feature fusion. Furthermore, we specially design an additional constraint strategy consisting of Cross-modal Loss and Edge Loss to enhance ambiguous contours and expedite reliable content generation. Extensive experiments on KITTI and Waymo datasets demonstrate our superiority over the state-of-the-art method, quantitatively and qualitatively
    corecore