87,514 research outputs found

    Constrained K-Means Clustering Validation Study

    Get PDF
    Machine Learning (ML) is a growing topic within Computer Science with applications in many fields. One open problem in ML is data separation, or data clustering. Our project is a validation study of, “Constrained K-means Clustering with Background Knowledge by Wagstaff et. al. Our data validates the finding by Wagstaff et. al., which shows that a modified k-means clustering approach can outperform more general unsupervised learning algorithms when some domain information about the problem is available. Our data suggests that k-means clustering augmented with domain information can be a time efficient means for segmenting data sets. Our validation study focused on six classic data sets used by Wagstaff et. al. and does not consider the GPS data of the original study

    An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering

    Full text link
    The minimum sum-of-squares clustering (MSSC), or k-means type clustering, is traditionally considered an unsupervised learning task. In recent years, the use of background knowledge to improve the cluster quality and promote interpretability of the clustering process has become a hot research topic at the intersection of mathematical optimization and machine learning research. The problem of taking advantage of background information in data clustering is called semi-supervised or constrained clustering. In this paper, we present a branch-and-cut algorithm for semi-supervised MSSC, where background knowledge is incorporated as pairwise must-link and cannot-link constraints. For the lower bound procedure, we solve the semidefinite programming relaxation of the MSSC discrete optimization model, and we use a cutting-plane procedure for strengthening the bound. For the upper bound, instead, by using integer programming tools, we use an adaptation of the k-means algorithm to the constrained case. For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points with different combinations of must-link and cannot-link constraints and with a generic number of features. This problem size is about four times larger than the one of the instances solved by state-of-the-art exact algorithms

    Constrained \u3ci\u3ek\u3c/i\u3e-Means Clustering Validation Study

    Get PDF
    Machine Learning (ML) is a growing topic within Computer Science with applications in many fields. One open problem in ML is data separation, or data clustering. Our project is a validation study of, “Constrained k-means Clustering with Background Knowledge by Wagstaff et. al. Our data validates the finding by Wagstaff et. al., which shows that a modified k-means clustering approach can outperform more general unsupervised learning algorithms when some domain information about the problem is available. Our data suggests that k-means clustering augmented with domain information can be a time efficient means for segmenting data sets. Our validation study focused on six classic data sets used by Wagstaff et. al. and does not consider the GPS data of the original study. We have published our code on a public SWOSU Github repository to enable other researchers to use our code as a starting point. Validation studies such as this provide great learning opportunities for students interested in working with Machine Learning, Artificial Intelligence, and other related applications. This research was funded in part by the Dr. Snowden Memorial Scholarship with the NASA OKLAHOMA Space Grant Consortium. This material is based upon work supported by the National Aeronautics and Space Administration issued through the Oklahoma Space Grant Consortium

    Community Structure Detection in Complex Networks with Partial Background Information

    Full text link
    Constrained clustering has been well-studied in the unsupervised learning society. However, how to encode constraints into community structure detection, within complex networks, remains a challenging problem. In this paper, we propose a semi-supervised learning framework for community structure detection. This framework implicitly encodes the must-link and cannot-link constraints by modifying the adjacency matrix of network, which can also be regarded as de-noising the consensus matrix of community structures. Our proposed method gives consideration to both the topology and the functions (background information) of complex network, which enhances the interpretability of the results. The comparisons performed on both the synthetic benchmarks and the real-world networks show that the proposed framework can significantly improve the community detection performance with few constraints, which makes it an attractive methodology in the analysis of complex networks

    Multi-view constrained clustering with an incomplete mapping between views

    Full text link
    Multi-view learning algorithms typically assume a complete bipartite mapping between the different views in order to exchange information during the learning process. However, many applications provide only a partial mapping between the views, creating a challenge for current methods. To address this problem, we propose a multi-view algorithm based on constrained clustering that can operate with an incomplete mapping. Given a set of pairwise constraints in each view, our approach propagates these constraints using a local similarity measure to those instances that can be mapped to the other views, allowing the propagated constraints to be transferred across views via the partial mapping. It uses co-EM to iteratively estimate the propagation within each view based on the current clustering model, transfer the constraints across views, and then update the clustering model. By alternating the learning process between views, this approach produces a unified clustering model that is consistent with all views. We show that this approach significantly improves clustering performance over several other methods for transferring constraints and allows multi-view clustering to be reliably applied when given a limited mapping between the views. Our evaluation reveals that the propagated constraints have high precision with respect to the true clusters in the data, explaining their benefit to clustering performance in both single- and multi-view learning scenarios

    Semi-supervised cross-entropy clustering with information bottleneck constraint

    Full text link
    In this paper, we propose a semi-supervised clustering method, CEC-IB, that models data with a set of Gaussian distributions and that retrieves clusters based on a partial labeling provided by the user (partition-level side information). By combining the ideas from cross-entropy clustering (CEC) with those from the information bottleneck method (IB), our method trades between three conflicting goals: the accuracy with which the data set is modeled, the simplicity of the model, and the consistency of the clustering with side information. Experiments demonstrate that CEC-IB has a performance comparable to Gaussian mixture models (GMM) in a classical semi-supervised scenario, but is faster, more robust to noisy labels, automatically determines the optimal number of clusters, and performs well when not all classes are present in the side information. Moreover, in contrast to other semi-supervised models, it can be successfully applied in discovering natural subgroups if the partition-level side information is derived from the top levels of a hierarchical clustering
    corecore