746 research outputs found

    Optimizing Magnetic Resonance Imaging for Image-Guided Radiotherapy

    Full text link
    Magnetic resonance imaging (MRI) is playing an increasingly important role in image-guided radiotherapy. MRI provides excellent soft tissue contrast, and is flexible in characterizing various tissue properties including relaxation, diffusion and perfusion. This thesis aims at developing new image analysis and reconstruction algorithms to optimize MRI in support of treatment planning, target delineation and treatment response assessment for radiotherapy. First, unlike Computed Tomography (CT) images, MRI cannot provide electron density information necessary for radiation dose calculation. To address this, we developed a synthetic CT generation algorithm that generates pseudo CT images from MRI, based on tissue classification results on MRI for female pelvic patients. To improve tissue classification accuracy, we learnt a pelvic bone shape model from a training dataset, and integrated the shape model into an intensity-based fuzzy c-menas classification scheme. The shape-regularized tissue classification algorithm is capable of differentiating tissues that have significant overlap in MRI intensity distributions. Treatment planning dose calculations using synthetic CT image volumes generated from the tissue classification results show acceptably small variations as compared to CT volumes. As MRI artifacts, such as B1 filed inhomogeneity (bias field) may negatively impact the tissue classification accuracy, we also developed an algorithm that integrates the correction of bias field into the tissue classification scheme. We modified the fuzzy c-means classification by modeling the image intensity as the true intensity corrupted by the multiplicative bias field. A regularization term further ensures the smoothness of the bias field. We solved the optimization problem using a linearized alternating direction method of multipliers (ADMM) method, which is more computational efficient over existing methods. The second part of this thesis looks at a special MR imaging technique, diffusion-weighted MRI (DWI). By acquiring a series of DWI images with a wide range of b-values, high order diffusion analysis can be performed using the DWI image series and new biomarkers for tumor grading, delineation and treatment response evaluation may be extracted. However, DWI suffers from low signal-to-noise ratio at high b-values, and the multi-b-value acquisition makes the total scan time impractical for clinical use. In this thesis, we proposed an accelerated DWI scheme, that sparsely samples k-space and reconstructs images using a model-based algorithm. Specifically, we built a 3D block-Hankel tensor from k-space samples, and modeled both local and global correlations of the high dimensional k-space data as a low-rank property of the tensor. We also added a phase constraint to account for large phase variations across different b-values, and to allow reconstruction from partial Fourier acquisition, which further accelerates the image acquisition. We proposed an ADMM algorithm to solve the constrained image reconstruction problem. Image reconstructions using both simulated and patient data show improved signal-to-noise ratio. As compared to clinically used parallel imaging scheme which achieves a 4-fold acceleration, our method achieves an 8-fold acceleration. Reconstructed images show reduced reconstruction errors as proved on simulated data and similar diffusion parameter mapping results on patient data.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143919/1/llliu_1.pd

    Towards efficient neurosurgery: Image analysis for interventional MRI

    Get PDF
    Interventional magnetic resonance imaging (iMRI) is being increasingly used for performing imageguided neurosurgical procedures. Intermittent imaging through iMRI can help a neurosurgeon visualise the target and eloquent brain areas during neurosurgery and lead to better patient outcome. MRI plays an important role in planning and performing neurosurgical procedures because it can provide highresolution anatomical images that can be used to discriminate between healthy and diseased tissue, as well as identify location and extent of functional areas. This is of significant clinical utility as it helps the surgeons maximise target resection and avoid damage to functionally important brain areas. There is clinical interest in propagating the pre-operative surgical information to the intra-operative image space as this allows the surgeons to utilise the pre-operatively generated surgical plans during surgery. The current state of the art neuronavigation systems achieve this by performing rigid registration of pre-operative and intra-operative images. As the brain undergoes non-linear deformations after craniotomy (brain shift), the rigidly registered pre-operative images do not accurately align anymore with the intra-operative images acquired during surgery. This limits the accuracy of these neuronavigation systems and hampers the surgeon’s ability to perform more aggressive interventions. In addition, intra-operative images are typically of lower quality with susceptibility artefacts inducing severe geometric and intensity distortions around areas of resection in echo planar MRI images, significantly reducing their utility in the intraoperative setting. This thesis focuses on development of novel methods for an image processing workflow that aims to maximise the utility of iMRI in neurosurgery. I present a fast, non-rigid registration algorithm that can leverage information from both structural and diffusion weighted MRI images to localise target lesions and a critical white matter tract, the optic radiation, during surgical management of temporal lobe epilepsy. A novel method for correcting susceptibility artefacts in echo planar MRI images is also developed, which combines fieldmap and image registration based correction techniques. The work developed in this thesis has been validated and successfully integrated into the surgical workflow at the National Hospital for Neurology and Neurosurgery in London and is being clinically used to inform surgical decisions

    Correcting for Motion between Acquisitions in Diffusion MR Imaging

    Get PDF
    The diffusion tensor (DT) and other diffusion models assume that each voxel corresponds to the same anatomical location in all the measurements. Movements and distortions violate this assumption and typically the images are realigned before model fitting. We propose a set of model-based methods to improve motion correction and avoid the errors that the traditional method introduces. The new methods are based on a three-step procedure to register DWI datasets, and use different reference images for DWIs with different gradient directions for registration, so the registrations take into account the contrast differences of measurements. Performance of the model-based registration techniques depends critically on outlier rejection. We develop new methods for fitting the diffusion tensor to diffusion MRI measurements in the presence of outliers by drawing on the RANSAC algorithm from computer vision. We compareone popularly used outlier rejection method RESTORE in the diffusion MRI literature with our new method. Then, we combine outlier rejection methods with model-based registration schemes, and compare the performance of motion correction with other methods. After aligning the dataset, we also update diffusion gradients for the registered datasets from both traditional and our methods, according to the transformations used in registrations. We develop and discuss a variety of registration evaluation methods using both synthetic and human-brain diffusion MRI datasets. Experiments demonstrate both quantitative and qualitative improvements using our new model-based methods

    Quantitative susceptibility mapping and susceptibility-based distortion correction of echo planar images

    Get PDF
    Thesis (Ph. D. in Medical Engineering)--Harvard-MIT Program in Health Sciences and Technology, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 143-153).The field of medical image analysis continues to expand as magnetic resonance imaging (MRI) technology advances through increases in field strength and the development of new image acquisition and reconstruction methods. The advent of echo planar imaging (EPI) has allowed volumetric data sets to be obtained in a few seconds, making it possible to image dynamic physiological processes in the brain. In order to extract meaningful information from functional and diffusion data, clinicians and neuroscientists typically combine EPI data with high resolution structural images. Image registration is the process of determining the correct correspondence. Registration of EPI and structural images is difficult due to distortions in EPI data. These distortions are caused by magnetic field perturbations that arise from changes in magnetic susceptibility throughout the object of interest. Distortion is typically corrected by acquiring an additional scan called a fieldmap. A fieldmap provides a direct measure of the magnetic perturbations, allowing distortions to be easily computed and corrected. Fieldmaps, however, require additional scan time, may not be reliable in the presence of significant motion or respiration effects, and are often omitted from clinical protocols. In this thesis, we develop a novel method for correcting distortions in EPI data and registering the EPI to structural MRI. A synthetic fieldmap is computed from a tissue/air segmentation of a structural image using a perturbation method and subsequently used to unwarp the EPI data. Shim and other missing parameters are estimated by registration. We obtain results that are similar to those obtained using fieldmnaps, however, neither fieldmaps nor knowledge of shim coefficients is required. In addition, we describe a method for atlas-based segmentation of structural images for calculation of synthetic fieldmaps. CT data sets are used to construct a probabilistic atlas of the head and corresponding MRI is used to train a classifier that segments soft tissue, air, and bone. Synthetic fieldmap results agree well with acquired fieldmaps: 90% of voxel shifts show subvoxel disagreement with those computed from acquired fieldmaps. In addition, synthetic fieldmaps show statistically significant improvement following inclusion of the atlas. In the second part of this thesis, we focus on the inverse problem of reconstructing quantitative magnetic susceptibility maps from acquired fieldmaps. Iron deposits change the susceptibility of tissue, resulting in magnetic perturbations that are detectable with high resolution fieldmaps. Excessive iron deposition in specific regions of the brain is associated with neurodegenerative disorders such as Alzheimer's and Parkinson's disease. In addition, iron is known to accumulate at varying rates throughout the brain in normal aging. Developing a non-invasive method to calculate iron concentration may provide insight into the role of iron in the pathophysiology of neurodegenerative disease. Calculating susceptibility maps from measured fieldmaps is difficult, however, since iron-related field inhomogeneity may be obscured by larger field perturbations, or 'biasfields', arising from adjacent tissue/air boundaries. In addition, the inverse problem is ill-posed, and fieldmap measurements are only valid in limited anatomical regions. In this dissertation, we develop a novel atlas-based susceptibility mapping (ASM) technique that requires only a single fieldmap acquisition and successfully inverts a spatial formulation of the forward field model. We derive an inhomogeneous wave equation that relates the Laplacian of the observed field to the D'Alembertian of susceptibility, and eliminates confounding biasfields. The tissue/air atlas we constructed for susceptibility-based distortion correction is applied to resolve ambiquity in the forward model arising from the ill-posed inversion. We include fourier-based modeling of external susceptibility sources and the associated biasfield in a variational approach, allowing for simultaneous susceptibility estimation and biasfield elimination. Results show qualitative improvement over two methods commonly used to infer underlying susceptibility values and quantitative susceptibility estimates show stronger correlation with postmortem iron concentrations than competing methods.by Clare Poynton.Ph.D.in Medical Engineerin

    Correction of distortions in MR Echo Planar images using a super-resolution T2-Weighted volume

    Get PDF
    Magnetic resonance imaging (MRI) is a widely used technique to assess brain diseases without the use of ionizing radiations. Brain anatomy can be captured using T1-Weighted (T1W) and T2-Weighted (T2W) acquisitions. In addition to mapping brain anatomy, MRI can be also applied to study the brain functions through a process called the hemodynamic response. Blood releases oxygen to neurons at a greater rate than to inactive neurons: this causes a change of the relative levels of oxygenated and deoxygenated blood, i.e. a change of the contrast between the two level of blood oxygenation that can be detected on the basis of their differential magnetic susceptibility. This acquisition technique is called functional Magnetic Resonance Imaging (fMRI), and it represents an indirect measure of the neuron activity. Although BOLD-based techniques have been shown to work reliably for a huge range of applications, straight-forward BOLD imaging has some inherent problems (such as macroscopic field inhomogeneity effects that produce spatial distortions in the acquisitions). The aim of this thesis is to give an overview of the fMRI data analysis focusing on some aspects of the preprocessing pipeline. In chapter 1 we will introduce the problem of Echo Planar Imaging (EPI) spatial distortions and a new method to correct them, based on non-linear registrations to an intra-subject T2W volume. In chapter 2 we will show the procedure for the construction of a good reference to apply the EPI-distortions correction method. This method belongs to the super-resolution algorithms and it aims to produce a T2W high resolution reference. In chapter 3, the previous methods will be combined together to perform the EPI distortion correction method. Finally, in chapter 4 we will present a bunch of clinical fMRI studies where the correction method was performed. Our results provide a good evidence of the effectiveness of the combined approach, which gives the advantage of using only standard acquisition protocol to have alle the information required to perform the proposed EPI-distortion correction

    What's new and what's next in diffusion MRI preprocessing

    Get PDF
    Diffusion MRI (dMRI) provides invaluable information for the study of tissue microstructure and brain connectivity, but suffers from a range of imaging artifacts that greatly challenge the analysis of results and their interpretability if not appropriately accounted for. This review will cover dMRI artifacts and preprocessing steps, some of which have not typically been considered in existing pipelines or reviews, or have only gained attention in recent years: brain/skull extraction, B-matrix incompatibilities w.r.t the imaging data, signal drift, Gibbs ringing, noise distribution bias, denoising, between- and within-volumes motion, eddy currents, outliers, susceptibility distortions, EPI Nyquist ghosts, gradient deviations, bias fields, and spatial normalization. The focus will be on “what’s new” since the notable advances prior to and brought by the Human Connectome Project (HCP), as presented in the predecessing issue on “Mapping the Connectome” in 2013. In addition to the development of novel strategies for dMRI preprocessing, exciting progress has been made in the availability of open source tools and reproducible pipelines, databases and simulation tools for the evaluation of preprocessing steps, and automated quality control frameworks, amongst others. Finally, this review will consider practical considerations and our view on “what’s next” in dMRI preprocessing

    The development and application of a simulation system for diffusion-weighted MRI

    Get PDF
    Diffusion-weighted MRI (DW-MRI) is a powerful, non-invasive imaging technique that allows us to infer the structure of biological tissue. It is particularly well suited to the brain, and is used by clinicians and researchers studying its structure in health and disease. High quality data is required to accurately characterise tissue structure with DW-MRI. Obtaining such data requires the careful optimisation of the image acquisition and processing pipeline, in order to maximise image quality and minimise artefacts. This thesis extends an existing MRI simulator to create a simulation system capable of producing realistic DW-MR data, with artefacts, and applies it to improve the acquisition and processing of such data. The simulator is applied in three main ways. Firstly, a novel framework for evaluating post-processing techniques is proposed and applied to assess commonly used strategies for the correction of motion, eddy-current and susceptibility artefacts. Secondly, it is used to explore the often overlooked susceptibility-movement interaction. It is demonstrated that this adversely impacts analysis of DW-MRI data, and a simple modification to the acquisition scheme is suggested to mitigate its impact. Finally, the simulation is applied to develop a new tool to perform automatic quality control. Simulated data is used to train a classifier to detect movement artefacts in data, with performance approaching that of a classifier trained on real data whilst requiring much less manually-labelled training data. It is hoped that both the findings in this thesis and the simulation tool itself will benefit the DW-MRI community. To this end, the tool is made freely available online to aid the development and validation of methods for acquiring and processing DW-MRI data

    Enhancing Registration for Image-Guided Neurosurgery

    Get PDF
    Pharmacologically refractive temporal lobe epilepsy and malignant glioma brain tumours are examples of pathologies that are clinically managed through neurosurgical intervention. The aims of neurosurgery are, where possible, to perform a resection of the surgical target while minimising morbidity to critical structures in the vicinity of the resected brain area. Image-guidance technology aims to assist this task by displaying a model of brain anatomy to the surgical team, which may include an overlay of surgical planning information derived from preoperative scanning such as the segmented resection target and nearby critical brain structures. Accurate neuronavigation is hindered by brain shift, the complex and non-rigid deformation of the brain that arises during surgery, which invalidates assumed rigid geometric correspondence between the neuronavigation model and the true shifted positions of relevant brain areas. Imaging using an interventional MRI (iMRI) scanner in a next-generation operating room can serve as a reference for intraoperative updates of the neuronavigation. An established clinical image processing workflow for iMRI-based guidance involves the correction of relevant imaging artefacts and the estimation of deformation due to brain shift based on non-rigid registration. The present thesis introduces two refinements aimed at enhancing the accuracy and reliability of iMRI-based guidance. A method is presented for the correction of magnetic susceptibility artefacts, which affect diffusion and functional MRI datasets, based on simulating magnetic field variation in the head from structural iMRI scans. Next, a method is presented for estimating brain shift using discrete non-rigid registration and a novel local similarity measure equipped with an edge-preserving property which is shown to improve the accuracy of the estimated deformation in the vicinity of the resected area for a number of cases of surgery performed for the management of temporal lobe epilepsy and glioma
    corecore