11,954 research outputs found

    Distributed Optimal Rate-Reliability-Lifetime Tradeoff in Wireless Sensor Networks

    Full text link
    The transmission rate, delivery reliability and network lifetime are three fundamental but conflicting design objectives in energy-constrained wireless sensor networks. In this paper, we address the optimal rate-reliability-lifetime tradeoff with link capacity constraint, reliability constraint and energy constraint. By introducing the weight parameters, we combine the objectives at rate, reliability, and lifetime into a single objective to characterize the tradeoff among them. However, the optimization formulation of the rate-reliability-reliability tradeoff is neither separable nor convex. Through a series of transformations, a separable and convex problem is derived, and an efficient distributed Subgradient Dual Decomposition algorithm (SDD) is proposed. Numerical examples confirm its convergence. Also, numerical examples investigate the impact of weight parameters on the rate utility, reliability utility and network lifetime, which provide a guidance to properly set the value of weight parameters for a desired performance of WSNs according to the realistic application's requirements.Comment: 27 pages, 10 figure

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page
    • …
    corecore