23,038 research outputs found

    PMLR

    Get PDF
    We propose a neural information processing system obtained by re-purposing the function of a biological neural circuit model to govern simulated and real-world control tasks. Inspired by the structure of the nervous system of the soil-worm, C. elegans, we introduce ordinary neural circuits (ONCs), defined as the model of biological neural circuits reparameterized for the control of alternative tasks. We first demonstrate that ONCs realize networks with higher maximum flow compared to arbitrary wired networks. We then learn instances of ONCs to control a series of robotic tasks, including the autonomous parking of a real-world rover robot. For reconfiguration of the purpose of the neural circuit, we adopt a search-based optimization algorithm. Ordinary neural circuits perform on par and, in some cases, significantly surpass the performance of contemporary deep learning models. ONC networks are compact, 77% sparser than their counterpart neural controllers, and their neural dynamics are fully interpretable at the cell-level

    Guided Frequency Loss for Image Restoration

    Full text link
    Image Restoration has seen remarkable progress in recent years. Many generative models have been adapted to tackle the known restoration cases of images. However, the interest in benefiting from the frequency domain is not well explored despite its major factor in these particular cases of image synthesis. In this study, we propose the Guided Frequency Loss (GFL), which helps the model to learn in a balanced way the image's frequency content alongside the spatial content. It aggregates three major components that work in parallel to enhance learning efficiency; a Charbonnier component, a Laplacian Pyramid component, and a Gradual Frequency component. We tested GFL on the Super Resolution and the Denoising tasks. We used three different datasets and three different architectures for each of them. We found that the GFL loss improved the PSNR metric in most implemented experiments. Also, it improved the training of the Super Resolution models in both SwinIR and SRGAN. In addition, the utility of the GFL loss increased better on constrained data due to the less stochasticity in the high frequencies' components among samples

    HopSkipJumpAttack: A Query-Efficient Decision-Based Attack

    Full text link
    The goal of a decision-based adversarial attack on a trained model is to generate adversarial examples based solely on observing output labels returned by the targeted model. We develop HopSkipJumpAttack, a family of algorithms based on a novel estimate of the gradient direction using binary information at the decision boundary. The proposed family includes both untargeted and targeted attacks optimized for ℓ2\ell_2 and ℓ∞\ell_\infty similarity metrics respectively. Theoretical analysis is provided for the proposed algorithms and the gradient direction estimate. Experiments show HopSkipJumpAttack requires significantly fewer model queries than Boundary Attack. It also achieves competitive performance in attacking several widely-used defense mechanisms. (HopSkipJumpAttack was named Boundary Attack++ in a previous version of the preprint.

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin
    • …
    corecore