3,286 research outputs found

    Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks

    Get PDF
    In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.Comment: 14 pages, 6 figures, submitted to IEEE JSTSP Special Issue on Machine Learning for Cognition in Radio Communications and Rada

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A Kosambi-Karhunen–Loève Learning Approach to Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    This paper focuses on the issues of cooperative spectrum sensing (CSS) in a large cognitive radio network (CRN) where cognitive radio (CR) nodes can cooperative with neighboring nodes using spatial cooperation. A novel optimal global primary user (PU) detection framework with geographical cooperation using a deflection coefficient metric measure to characterize detection performance is proposed. It is assumed that only a small fraction of CR nodes communicate with the fusion center (FC). Optimal cooperative techniques which are global for class deterministic PU signals are proposed. By establishing the relationship between the CSS technique design issues and Kosambi-Karhunen–Loève transform (KLT) the problem is solved efficiently and the impact on detection performance is evaluated using simulation.Peer reviewedFinal Accepted Versio
    • …
    corecore