816 research outputs found

    Ontology-based modelling of architectural styles

    Get PDF
    The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework. Architectural styles are often neglected in software architectures. We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. We introduce a framework for style definition and style combination. The application of the ontological framework in the form of an integration into existing architectural description notations is illustrated

    SAVCBS 2004 Specification and Verification of Component-Based Systems: Workshop Proceedings

    Get PDF
    This is the proceedings of the 2004 SAVCBS workshop. The workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to establish a suitable foundation for the specification and verification of component-based systems. Component-based systems are a growing concern for the software engineering community. Specification and reasoning techniques are urgently needed to permit composition of systems from components. Component-based specification and verification is also vital for scaling advanced verification techniques such as extended static analysis and model checking to the size of real systems. The workshop considers formalization of both functional and non-functional behavior, such as performance or reliability

    The Impact of Petri Nets on System-of-Systems Engineering

    Get PDF
    The successful engineering of a large-scale system-of-systems project towards deterministic behaviour depends on integrating autonomous components using international communications standards in accordance with dynamic requirements. To-date, their engineering has been unsuccessful: no combination of top-down and bottom-up engineering perspectives is adopted, and information exchange protocol and interfaces between components are not being precisely specified. Various approaches such as modelling, and architecture frameworks make positive contributions to system-of-systems specification but their successful implementation is still a problem. One of the most popular modelling notations available for specifying systems, UML, is intuitive and graphical but also ambiguous and imprecise. Supplying a range of diagrams to represent a system under development, UML lacks simulation and exhaustive verification capability. This shortfall in UML has received little attention in the context of system-of-systems and there are two major research issues: 1. Where the dynamic, behavioural diagrams of UML can and cannot be used to model and analyse system-of-systems 2. Determining how Petri nets can be used to improve the specification and analysis of the dynamic model of a system-of-systems specified using UML This thesis presents the strengths and weaknesses of Petri nets in relation to the specification of system-of-systems and shows how Petri net models can be used instead of conventional UML Activity Diagrams. The model of the system-of-systems can then be analysed and verified using Petri net theory. The Petri net formalism of behaviour is demonstrated using two case studies from the military domain. The first case study uses Petri nets to specify and analyse a close air support mission. This case study concludes by indicating the strengths, weaknesses, and shortfalls of the proposed formalism in system-of-systems specification. The second case study considers specification of a military exchange network parameters problem and the results are compared with the strengths and weaknesses identified in the first case study. Finally, the results of the research are formulated in the form of a Petri net enhancement to UML (mapping existing activity diagram elements to Petri net elements) to meet the needs of system-of-systems specification, verification and validation

    Automated Refactoring of Legacy Java Software to Default Methods

    Full text link
    Java 8 default methods, which allow interfaces to contain (instance) method implementations, are useful for the skeletal implementation software design pattern. However, it is not easy to transform existing software to exploit default methods as it requires analyzing complex type hierarchies, resolving multiple implementation inheritance issues, reconciling differences between class and interface methods, and analyzing tie-breakers (dispatch precedence) with overriding class methods to preserve type-correctness and confirm semantics preservation. In this paper, we present an efficient, fully-automated, type constraint-based refactoring approach that assists developers in taking advantage of enhanced interfaces for their legacy Java software. The approach features an extensive rule set that covers various corner-cases where default methods cannot be used. To demonstrate applicability, we implemented our approach as an Eclipse plug-in and applied it to 19 real-world Java projects, as well as submitted pull requests to popular GitHub repositories. The indication is that it is useful in migrating skeletal implementation methods to interfaces as default methods, sheds light onto the pattern’s usage, and provides insight to language designers on how this new construct applies to existing software

    Performance modelling for system-level design

    Get PDF
    xii+208hlm.;24c

    Proceedings of the 11th Overture Workshop

    Get PDF
    The 11th Overture Workshop was held in Aarhus, Denmark on Wed/Thu 28–29th Au- gust 2013. It was the 11th workshop in the current series focusing on the Vienna De- velopment Method (VDM) and particularly its community-based tools development project, Overture (http://www.overturetool.org/), and related projects such as COMPASS(http://www.compass-research.eu/) and DESTECS (http://www.destecs.org). Invited talks were given by Yves Ledru and Joe Kiniry. The workshop attracted 25 participants representing 10 nationalities. The goal of the workshop was to provide a forum to present new ideas, to identify and encourage new collaborative research, and to foster current strands of work towards publication in the mainstream conferences and journals. The Overture initiative held its first workshop at FM’05. Workshops were held subsequently at FM’06, FM’08 and FM’09, FM’11, FM’12 and in between

    Validation and Verification of Formal Specifications in Object-Oriented Software Engineering

    Get PDF
    The use of formal specifications allows for a software system to be defined with stringent mathematical semantics and syntax via such tools as propositional calculus and set theory. There are many perceived benefits garnered from formal specifications, such as a thorough and in-depth understanding of the domain and system being specified and a reduction in user requirement ambiguity. Probably the greatest benefit of formal specifications, and that which is least capitalized upon, is that mathematical proof procedures can be used to test and prove internal consistency and syntactic correctness in an effort to ensure comprehensive validation and verification (V&V). The automation of the proof process will make formal methods far more attractive by reducing the time required and the effort involved in the V&V of software systems

    Multi-level model product lines: Open and closed variability for modelling language families

    Full text link
    Modelling is an essential activity in software engineering processes. It typically involves two meta-levels: one includes meta-models that describe modelling languages, and the other contains models built by instantiating those meta-models. Multi-level modelling generalizes this approach by allowing models to span an arbitrary number of meta-levels. A scenario that profits from multi-level modelling is the definition of language families that become specialized by successive refinements at subsequent meta-levels, hence promoting language reuse. This enables an open set of variability options for the possible specializations of a given language. However, multi-level modelling lacks the ability to express closed variability regarding the supported language primitives and their realizations. This limits the reuse opportunities of a language family. To improve this situation, we propose a novel combination of product lines with multi-level modelling to cover both open and closed variability. Our proposal is backed by a formal theory that guarantees correctness, and is implemented atop the MetaDepth multi-level modelling tool.Work funded by the Spanish Ministry of Science (project MASSIVE, RTI2018-095255-B-I00) and the R&D programme of Madrid (project FORTE, P2018/TCS-4314)
    • 

    corecore