580 research outputs found

    Bit-Interleaved Coded Multiple Beamforming with Perfect Coding

    Full text link
    When the Channel State Information (CSI) is known by both the transmitter and the receiver, beamforming techniques employing Singular Value Decomposition (SVD) are commonly used in Multiple-Input Multiple-Output (MIMO) systems. Without channel coding, there is a trade-off between full diversity and full multiplexing. When channel coding is added, both of them can be achieved as long as the code rate Rc and the number of employed subchannels S satisfy the condition RcS<=1. By adding a properly designed constellation precoder, both full diversity and full multiplexing can be achieved for both uncoded and coded systems with the trade-off of a higher decoding complexity, e.g., Fully Precoded Multiple Beamforming (FPMB) and Bit-Interleaved Coded Multiple Beamforming with Full Precoding (BICMB-FP) without the condition RcS<=1. Recently discovered Perfect Space-Time Block Code (PSTBC) is a full-rate full-diversity space-time code, which achieves efficient shaping and high coding gain for MIMO systems. In this paper, a new technique, Bit-Interleaved Coded Multiple Beamforming with Perfect Coding (BICMB-PC), is introduced. BICMB-PC transmits PSTBCs through convolutional coded SVD systems. Similar to BICMB-FP, BICMB-PC achieves both full diversity and full multiplexing, and its performance is almost the same as BICMB-FP. The advantage of BICMB-PC is that it can provide a much lower decoding complexity than BICMB-FP, since the real and imaginary parts of the received signal can be separated for BICMB-PC of dimensions 2 and 4, and only the part corresponding to the coded bit is required to acquire one bit metric for the Viterbi decoder.Comment: accepted to conference; Proc. IEEE ICC 201

    Multiple Beamforming with Perfect Coding

    Full text link
    Perfect Space-Time Block Codes (PSTBCs) achieve full diversity, full rate, nonvanishing constant minimum determinant, uniform average transmitted energy per antenna, and good shaping. However, the high decoding complexity is a critical issue for practice. When the Channel State Information (CSI) is available at both the transmitter and the receiver, Singular Value Decomposition (SVD) is commonly applied for a Multiple-Input Multiple-Output (MIMO) system to enhance the throughput or the performance. In this paper, two novel techniques, Perfect Coded Multiple Beamforming (PCMB) and Bit-Interleaved Coded Multiple Beamforming with Perfect Coding (BICMB-PC), are proposed, employing both PSTBCs and SVD with and without channel coding, respectively. With CSI at the transmitter (CSIT), the decoding complexity of PCMB is substantially reduced compared to a MIMO system employing PSTBC, providing a new prospect of CSIT. Especially, because of the special property of the generation matrices, PCMB provides much lower decoding complexity than the state-of-the-art SVD-based uncoded technique in dimensions 2 and 4. Similarly, the decoding complexity of BICMB-PC is much lower than the state-of-the-art SVD-based coded technique in these two dimensions, and the complexity gain is greater than the uncoded case. Moreover, these aforementioned complexity reductions are achieved with only negligible or modest loss in performance.Comment: accepted to journa

    Symbol-Level Multiuser MISO Precoding for Multi-level Adaptive Modulation

    Get PDF
    Symbol-level precoding is a new paradigm for multiuser downlink systems which aims at creating constructive interference among the transmitted data streams. This can be enabled by designing the precoded signal of the multiantenna transmitter on a symbol level, taking into account both channel state information and data symbols. Previous literature has studied this paradigm for MPSK modulations by addressing various performance metrics, such as power minimization and maximization of the minimum rate. In this paper, we extend this to generic multi-level modulations i.e. MQAM and APSK by establishing connection to PHY layer multicasting with phase constraints. Furthermore, we address adaptive modulation schemes which are crucial in enabling the throughput scaling of symbol-level precoded systems. In this direction, we design signal processing algorithms for minimizing the required power under per-user SINR or goodput constraints. Extensive numerical results show that the proposed algorithm provides considerable power and energy efficiency gains, while adapting the employed modulation scheme to match the requested data rate

    Golden Coded Multiple Beamforming

    Full text link
    The Golden Code is a full-rate full-diversity space-time code, which achieves maximum coding gain for Multiple-Input Multiple-Output (MIMO) systems with two transmit and two receive antennas. Since four information symbols taken from an M-QAM constellation are selected to construct one Golden Code codeword, a maximum likelihood decoder using sphere decoding has the worst-case complexity of O(M^4), when the Channel State Information (CSI) is available at the receiver. Previously, this worst-case complexity was reduced to O(M^(2.5)) without performance degradation. When the CSI is known by the transmitter as well as the receiver, beamforming techniques that employ singular value decomposition are commonly used in MIMO systems. In the absence of channel coding, when a single symbol is transmitted, these systems achieve the full diversity order provided by the channel. Whereas this property is lost when multiple symbols are simultaneously transmitted. However, uncoded multiple beamforming can achieve the full diversity order by adding a properly designed constellation precoder. For 2 \times 2 Fully Precoded Multiple Beamforming (FPMB), the general worst-case decoding complexity is O(M). In this paper, Golden Coded Multiple Beamforming (GCMB) is proposed, which transmits the Golden Code through 2 \times 2 multiple beamforming. GCMB achieves the full diversity order and its performance is similar to general MIMO systems using the Golden Code and FPMB, whereas the worst-case decoding complexity of O(sqrt(M)) is much lower. The extension of GCMB to larger dimensions is also discussed.Comment: accepted to conferenc

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin
    • …
    corecore