1,670 research outputs found

    Coherent terabit communications with microresonator Kerr frequency combs

    Full text link
    Optical frequency combs enable coherent data transmission on hundreds of wavelength channels and have the potential to revolutionize terabit communications. Generation of Kerr combs in nonlinear integrated microcavities represents a particularly promising option enabling line spacings of tens of GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr combs may exhibit strong phase noise and multiplet spectral lines, and this has made high-speed data transmission impossible up to now. Recent work has shown that systematic adjustment of pump conditions enables low phase-noise Kerr combs with singlet spectral lines. Here we demonstrate that Kerr combs are suited for coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the optical source. In a first experiment, we encode a data stream of 392 Gbit/s on subsequent lines of a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment shows feedback-stabilization of a Kerr comb and transmission of a 1.44 Tbit/s data stream over a distance of up to 300 km. The results demonstrate that Kerr combs can meet the highly demanding requirements of multi-terabit/s coherent communications and thus offer a solution towards chip-scale terabit/s transceivers

    Assignment on Carrier Communications Simulation

    Get PDF
    Simulation of AM, QAM, complex QAM, 4QAM and 16QAM carrier communication schemes in Matlab

    Unified bit-based probabilistic data association aided MIMO detection for high-order QAM constellations

    No full text
    A unified Bit-based Probabilistic Data Association (B-PDA) detection approach is proposed for Multiple-Input Multiple-Output (MIMO) systems employing high-order rectangular Quadrature Amplitude Modulation (QAM). The new approach transforms the symbol detection process of QAM to a bit-based process by introducing a Unified Matrix Representation (UMR) of QAM. Both linear natural and nonlinear binary reflected Gray bit-to-symbol mappings are considered. With the aid of simulation results, we demonstrate that the linear natural mapping based B-PDA approach typically attained an improved detection performance (measured in terms of both Bit Error Ratio (BER) and Symbol Error Ratio (SER)) in comparison to the conventional symbol-based PDA aided MIMO detector, despite its dramatically reduced computational complexity. The only exception is that at low SNRs, the linear natural mapping based B-PDA is slightly inferior in terms of its BER to the conventional symbol-based PDA using binary reflected Gray mapping. Furthermore, the simulation results show that the linear natural mapping based B-PDA MIMO detector may approach the best-case performance provided by the nonlinear binary reflected Gray mapping based B-PDA MIMO detector under ideal conditions. Additionally, the implementation of the B-PDA MIMO detector is shown to be much simpler in the case of the linear natural mapping. Based on these two points, we conclude that in the context of the uncoded B-PDA MIMO detector it is preferable to use the linear natural bit-to-symbol mapping, rather than the nonlinear Gray mapping

    A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach

    Get PDF
    A local-oscillator phase-shifting approach is introduced to implement a fully integrated 24-GHz phased-array receiver using an SiGe technology. Sixteen phases of the local oscillator are generated in one oscillator core, resulting in a raw beam-forming accuracy of 4 bits. These phases are distributed to all eight receiving paths of the array by a symmetric network. The appropriate phase for each path is selected using high-frequency analog multiplexers. The raw beam-steering resolution of the array is better than 10 [degrees] for a forward-looking angle, while the array spatial selectivity, without any amplitude correction, is better than 20 dB. The overall gain of the array is 61 dB, while the array improves the input signal-to-noise ratio by 9 dB

    The performance of high-order quadrature amplitude modulation schemes for broadband wireless communication systems, 2012

    Get PDF
    The limited amount frequency spectrum available to wireless comnmnication systemsmakes it difficult to satisfy the rapidly growing demand for wireless service. Spectral efficiency can be increased by using higher order modulation schemes. However this come at the cost of increased probability of error. In this paper we investigate through MATLAB simulation, the implementation of orders of Quadrature Amplitude Modulation (QAM) more commonly used in wired networks. The BER performance of 64, 128, 256, 512, 1024, 2048, 4096, and 8192 QAM signals in the presence of Rayleigh and Rician multipath channels with additive white Gaussian noise are simulated

    Programmable digital modem

    Get PDF
    The design of the Programmable Digital Modem (PDM) is outlined. The PDM will be capable of operating with numerous modulation techniques including: 2-, 4-, 8- and 16-ary phase shift keying (PSK), minimum shift keying (MSK), and 16-ary quadrature amplitude modulation (QAM), with spectral occupancy from 1.2x to 2x the data symbol rate. It will also be programmable for transmission rates ranging from 2.34 to 300 Mbit/s, where the maximum symbol rate is 75 Msymbol/s. Furthermore, these parameters will be executable in independent burst, dependent burst, or continuous mode. In dependent burst mode the carrier and clock oscillator sources are common from burst to burst. To achieve as broad a set of requirements as these, it is clear that the essential signal processing must be digital. In addition, to avoid hardware changes when the operational parameters are changed, a fixed interface to an analog intermediate frequency (IF) is necessary for transmission; and, common system level architectures are necessary for the modulator and demodulator. Lastly, to minimize size and power, as much of the design as possible will be implemented with application specific integrated circuit (ASIC) chips

    Linear amplification with multiple nonlinear devices

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e ComputadoresIn mobile wireless systems, where there are strict power and bandwidth constrains it is desirable to adopt energy efficient constellations combined with powerful equalizer. However, this increased spectral efficiency of multilevel modulations comes at the expense of reduced power efficiency, which is undesirable in systems where power consumption is a constraint. Hence, minimization of the transmitted energy would enable a significant reduction in the total energy consumption of the wireless mobile devices. A simple and practical constellation optimization design would optimize the transmitted energy with a minimum increase in system complexity. The constellation decomposition in terms of a sum of BPSK (Bi-Phase Shift Keying) sub-constellations, relies on an analytical characterization of the mapping rule were the constellation symbols are written as a linear function of the transmitted bits. Moreover, large constellations in general and non-uniform constellations in particular are very sensitive to interference, namely the residual ISI (Inter-Symbol Interference) at the output of a practical equalizer that does not invert completely the channel effects. IB-DFE(Iterative Block DFE) is a promising iterative frequency domain equalization technique for SC-FDE schemes (Single-Carrier with Frequency Domain Equalization) that allows excellent performance. Therefore it is possible to use the decomposition of constellations on BPSK components to define a pragmatic method for designing IB-DFE receivers that can be employed with any constellation. In this thesis we consider SC-DFE schemes based on high orderM-ary energy optimized constellations with IB-DFE receivers. It is proposed a method for designing the receiver that does not require a significant increase in system complexity and can be used for the computation of the receiver parameters for any constellation. This method is then employed to design iterative receivers, implemented in the frequency-domain, which can cope with higher sensitivity to ISI effects of the constellations resulting from the energy optimization process.Fundação para a Ciência e Tecnologia - MPSat (PTDC/EEA-TEL/099074/2008) projec

    IMPROVING DIGITAL HIGH FREQUENCY (HF) COMMUNICATIONS WITH MULTI-DIMENSIONAL CONSTANT ENERGY MODULATION IMPLEMENTATION

    Get PDF
    Approved for public release. Distribution is unlimited.Improved high frequency (HF) digital communication is desired in commercial and military applications, especially at sea where the primary digital communications is satellite communications (SATCOM). HF over-the-horizon (OTH) relays are often the alternative communication path when SATCOM is too costly or not available. Our work suggests using multiple-input multiple-output (MIMO), orthogonal frequency division multiplexing (OFDM), and various modulations in HF OTH communications to reduce the bit error rate (BER), improve data throughput in the allocated bandwidth, and potentially provide physical layer security through obfuscation. We implement MIMO, OFDM, and multi-dimensional constant energy modulation (CEM) by utilizing GNU Radio Companion (GRC) to program two NI Ettus X310 Software Defined Radios (SDR) in a 2x2 MIMO configuration. This is the first time CEM has been transmitted and received. Modulation and demodulation are successful for various file types. The 4D-16 CEM constellation and its BER are compared to that of quadrature phase shift keying (QPSK) and 16-quadrature amplitude modulation (QAM). Explanations of how CEM, OFDM subcarriers, and space time block codes (STBC) can provide frequency agility, throughput manipulation, and physical layer security are provided. Selected CEM constellations are presented.Lieutenant Commander, United States NavyApproved for public release; distribution is unlimited

    Near-Capacity Turbo Trellis Coded Modulation Design

    No full text
    Bandwidth efficient parallel-concatenated Turbo Trellis Coded Modulation (TTCM) schemes were designed for communicating over uncorrelated Rayleigh fading channels. A symbol-based union bound was derived for analysing the error floor of the proposed TTCM schemes. A pair of In-phase (I) and Quadrature-phase (Q) interleavers were employed for interleaving the I and Q components of the TTCM coded symbols, in order to attain an increased diversity gain. The decoding convergence of the IQ-TTCM schemes was analysed using symbol based EXtrinsic Information Transfer (EXIT) charts. The best TTCM component codes were selected with the aid of both the symbol-based union bound and non-binary EXIT charts for the sake of designing capacity-approaching IQ-TTCM schemes in the context of 8PSK, 16QAM and 32QAM signal sets. It will be shown that our TTCM design is capable of approaching the channel capacity within 0.5 dB at a throughput of 4 bit/s/Hz, when communicating over uncorrelated Rayleigh fading channels using 32QAM
    corecore