10,917 research outputs found

    Constant-size Group Signatures from Lattices

    Get PDF
    Lattice-based group signature is an active research topic in recent years. Since the pioneering work by Gordon, Katz and Vaikuntanathan (Asiacrypt 2010), ten other schemes have been proposed, providing various improvements in terms of security, efficiency and functionality. However, in all known constructions, one has to fix the number NN of group users in the setup stage, and as a consequence, the signature sizes are dependent on NN. In this work, we introduce the first constant-size group signature from lattices, which means that the size of signatures produced by the scheme is independent of NN and only depends on the security parameter λ\lambda. More precisely, in our scheme, the sizes of signatures, public key and users\u27 secret keys are all of order O~(λ)\widetilde{\mathcal{O}}(\lambda). The scheme supports dynamic enrollment of users and is proven secure in the random oracle model under the Ring Short Integer Solution (RSIS) and Ring Learning With Errors (RLWE) assumptions. At the heart of our design is a zero-knowledge argument of knowledge of a valid message-signature pair for the Ducas-Micciancio signature scheme (Crypto 2014), that may be of independent interest

    Information entropy in fragmenting systems

    Get PDF
    The possibility of facing critical phenomena in nuclear fragmentation is a topic of great interest. Different observables have been proposed to identify such a behavior, in particular, some related to the use of information entropy as a possible signal of critical behavior. In this work we critically examine some of the most widespread used ones comparing its performance in bond percolation and in the analysis of fragmenting Lennard Jones Drops.Comment: 3 pages, 3 figure

    Dimensional Crossover in Bragg Scattering from an Optical Lattice

    Full text link
    We study Bragg scattering at 1D optical lattices. Cold atoms are confined by the optical dipole force at the antinodes of a standing wave generated inside a laser-driven high-finesse cavity. The atoms arrange themselves into a chain of pancake-shaped layers located at the antinodes of the standing wave. Laser light incident on this chain is partially Bragg-reflected. We observe an angular dependence of this Bragg reflection which is different to what is known from crystalline solids. In solids the scattering layers can be taken to be infinitely spread (3D limit). This is not generally true for an optical lattice consistent of a 1D linear chain of point-like scattering sites. By an explicit structure factor calculation we derive a generalized Bragg condition, which is valid in the intermediate regime. This enables us to determine the aspect ratio of the atomic lattice from the angular dependance of the Bragg scattered light.Comment: 4 pages, 5 figure

    Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices

    Get PDF
    We study asymptotics of perfect matchings on a large class of graphs called the contracting square-hexagon lattice, which is constructed row by row from either a row of a square grid or a row of a hexagonal lattice. We assign the graph periodic edge weights with period 1Ă—n1\times n, and consider the probability measure of perfect matchings in which the probability of each configuration is proportional to the product of edge weights. We show that the partition function of perfect matchings on such a graph can be computed explicitly by a Schur function depending on the edge weights. By analyzing the asymptotics of the Schur function, we then prove the Law of Large Numbers (limit shape) and the Central Limit Theorem (convergence to the Gaussian free field) for the corresponding height functions. We also show that the distribution of certain type of dimers near the turning corner is the same as the eigenvalues of Gaussian Unitary Ensemble, and that in the scaling limit under the boundary condition that each segment of the bottom boundary grows linearly with respect the dimension of the graph, the frozen boundary is a cloud curve whose number of tangent points to the bottom boundary of the domain depends on the size of the period, as well as the number of segments along the bottom boundary

    Lattice-Based Group Signatures: Achieving Full Dynamicity (and Deniability) with Ease

    Full text link
    In this work, we provide the first lattice-based group signature that offers full dynamicity (i.e., users have the flexibility in joining and leaving the group), and thus, resolve a prominent open problem posed by previous works. Moreover, we achieve this non-trivial feat in a relatively simple manner. Starting with Libert et al.'s fully static construction (Eurocrypt 2016) - which is arguably the most efficient lattice-based group signature to date, we introduce simple-but-insightful tweaks that allow to upgrade it directly into the fully dynamic setting. More startlingly, our scheme even produces slightly shorter signatures than the former, thanks to an adaptation of a technique proposed by Ling et al. (PKC 2013), allowing to prove inequalities in zero-knowledge. Our design approach consists of upgrading Libert et al.'s static construction (EUROCRYPT 2016) - which is arguably the most efficient lattice-based group signature to date - into the fully dynamic setting. Somewhat surprisingly, our scheme produces slightly shorter signatures than the former, thanks to a new technique for proving inequality in zero-knowledge without relying on any inequality check. The scheme satisfies the strong security requirements of Bootle et al.'s model (ACNS 2016), under the Short Integer Solution (SIS) and the Learning With Errors (LWE) assumptions. Furthermore, we demonstrate how to equip the obtained group signature scheme with the deniability functionality in a simple way. This attractive functionality, put forward by Ishida et al. (CANS 2016), enables the tracing authority to provide an evidence that a given user is not the owner of a signature in question. In the process, we design a zero-knowledge protocol for proving that a given LWE ciphertext does not decrypt to a particular message

    Chiral spin density wave, spin-charge-Chern liquid and d+id superconductivity in 1/4-doped correlated electronic systems on the honeycomb lattice

    Full text link
    Recently two interesting candidate quantum phases --- the chiral spin density wave state featuring anomalous quantum Hall effect and the d+id superconductor --- were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and t-J model on the honeycomb lattice at 1/4-doping. The main advantage of our approach is the use of symmetry quantum numbers of ground state wavefunctions on finite size systems (up to 32 sites) to sharply distinguish different quantum phases. Our results show that for 1≲U/t<401\lesssim U/t< 40 in the Hubbard model and for 0.1<J/t<0.80(2)0.1< J/t<0.80(2) in the t-J model, the quantum ground state is either a chiral spin density wave state or a spin-charge-Chern liquid, but not a d+id superconductor. However, in the t-J model, upon increasing JJ the system goes through a first-order phase transition at J/t=0.80(2)J/t=0.80(2) into the d+id superconductor. Here the spin-charge-Chern liquid state is a new type of topologically ordered quantum phase with Abelian anyons and fractionalized excitations. Experimental signatures of these quantum phases, such as tunneling conductance, are calculated. These results are discussed in the context of 1/4-doped graphene systems and other correlated electronic materials on the honeycomb lattice.Comment: Some parts of text revised for clarity of presentatio

    The Nambu-Jona-Lasinio model with staggered fermions

    Full text link
    We investigate the neighbourhood of the chiral phase transition in a lattice Nambu--Jona-Lasinio model, using both Monte Carlo methods and lattice Schwinger-Dyson equations.Comment: Talks at LAT93, Dallas, U.S.A. Postscript file, 6 pages, figures include
    • …
    corecore