18,007 research outputs found

    Constant-factor approximation of near-linear edit distance in near-linear time

    Full text link
    We show that the edit distance between two strings of length nn can be computed within a factor of f(ϵ)f(\epsilon) in n1+ϵn^{1+\epsilon} time as long as the edit distance is at least n1δn^{1-\delta} for some δ(ϵ)>0\delta(\epsilon) > 0.Comment: 40 pages, 4 figure

    Edit Distance in Near-Linear Time: it's a Constant Factor

    Full text link
    We present an algorithm for approximating the edit distance between two strings of length nn in time n1+ϵn^{1+\epsilon}, for any ϵ>0\epsilon>0, up to a constant factor. Our result completes the research direction set forth in the recent breakthrough paper [Chakraborty-Das-Goldenberg-Koucky-Saks, FOCS'18], which showed the first constant-factor approximation algorithm with a (strongly) sub-quadratic running time. Several recent results have shown near-linear complexity under different restrictions on the inputs (eg, when the edit distance is close to maximal, or when one of the inputs is pseudo-random). In contrast, our algorithm obtains a constant-factor approximation in near-linear running time for any input strings

    New sublinear methods in the struggle against classical problems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 129-134).We study the time and query complexity of approximation algorithms that access only a minuscule fraction of the input, focusing on two classical sources of problems: combinatorial graph optimization and manipulation of strings. The tools we develop find applications outside of the area of sublinear algorithms. For instance, we obtain a more efficient approximation algorithm for edit distance and distributed algorithms for combinatorial problems on graphs that run in a constant number of communication rounds. Combinatorial Graph Optimization Problems: The graph optimization problems considered by us include vertex cover, maximum matching, and dominating set. A graph algorithm is traditionally called a constant-time algorithm if it runs in time that is a function of only the maximum vertex degree, and in particular, does not depend on the number of vertices in the graph. We show a general local computation framework that allows for transforming many classical greedy approximation algorithms into constant-time approximation algorithms for the optimal solution size. By applying the framework, we obtain the first constant-time algorithm that approximates the maximum matching size up to an additive En, where E is an arbitrary positive constant, and n is the number of vertices in the graph. It is known that a purely additive En approximation is not computable in constant time for vertex cover and dominating set. We show that nevertheless, such an approximation is possible for a wide class of graphs, which includes planar graphs (and other minor-free families of graphs) and graphs of subexponential growth (a common property of networks). This result is obtained via locally computing a good partition of the input graph in our local computation framework. The tools and algorithms developed for these problems find several other applications: " Our methods can be used to construct local distributed approximation algorithms for some combinatorial optimization problems. " Our matching algorithm yields the first constant-time testing algorithm for distinguishing bounded-degree graphs that have a perfect matching from those far from having this property. " We give a simple proof that there is a constant-time algorithm distinguishing bounded-degree graphs that are planar (or in general, have a minor-closed property) from those that are far from planarity (or the given minor-closed property, respectively). Our tester is also much more efficient than the original tester of Benjamini, Schramm, and Shapira (STOC 2008). Edit Distance. We study a new asymmetric query model for edit distance. In this model, the input consists of two strings x and y, and an algorithm can access y in an unrestricted manner (without charge), while being charged for querying every symbol of x. We design an algorithm in the asymmetric query model that makes a small number of queries to distinguish the case when the edit distance between x and y is small from the case when it is large. Our result in the asymmetric query model gives rise to a near-linear time algorithm that approximates the edit distance between two strings to within a polylogarithmic factor. For strings of length n and every fixed E > 0, the algorithm computes a (log n)0(/0) approximation in n1i' time. This is an exponential improvement over the previously known near-linear time approximation factor 20( log (Andoni and Onak, STOC 2009; building on Ostrovsky and Rabani, J. ACM 2007). The algorithm of Andoni and Onak was the first to run in O(n 2 -) time, for any fixed constant 6 > 0, and obtain a subpolynomial, n"(o), approximation factor, despite a sequence of papers. We provide a nearly-matching lower bound on the number of queries. Our lower bound is the first to expose hardness of edit distance stemming from the input strings being "repetitive", which means that many of their substrings are approximately identical. Consequently, our lower bound provides the first rigorous separation on the complexity of approximation between edit distance and Ulam distance.by Krzysztof Onak.Ph.D

    Algorithms for sparse convolution and sublinear edit distance

    Get PDF
    In this PhD thesis on fine-grained algorithm design and complexity, we investigate output-sensitive and sublinear-time algorithms for two important problems. (1) Sparse Convolution: Computing the convolution of two vectors is a basic algorithmic primitive with applications across all of Computer Science and Engineering. In the sparse convolution problem we assume that the input and output vectors have at most t nonzero entries, and the goal is to design algorithms with running times dependent on t. For the special case where all entries are nonnegative, which is particularly important for algorithm design, it is known since twenty years that sparse convolutions can be computed in near-linear randomized time O(t log^2 n). In this thesis we develop a randomized algorithm with running time O(t \log t) which is optimal (under some mild assumptions), and the first near-linear deterministic algorithm for sparse nonnegative convolution. We also present an application of these results, leading to seemingly unrelated fine-grained lower bounds against distance oracles in graphs. (2) Sublinear Edit Distance: The edit distance of two strings is a well-studied similarity measure with numerous applications in computational biology. While computing the edit distance exactly provably requires quadratic time, a long line of research has lead to a constant-factor approximation algorithm in almost-linear time. Perhaps surprisingly, it is also possible to approximate the edit distance k within a large factor O(k) in sublinear time O~(n/k + poly(k)). We drastically improve the approximation factor of the known sublinear algorithms from O(k) to k^{o(1)} while preserving the O(n/k + poly(k)) running time.In dieser Doktorarbeit über feinkörnige Algorithmen und Komplexität untersuchen wir ausgabesensitive Algorithmen und Algorithmen mit sublinearer Lauf-zeit für zwei wichtige Probleme. (1) Dünne Faltungen: Die Berechnung der Faltung zweier Vektoren ist ein grundlegendes algorithmisches Primitiv, das in allen Bereichen der Informatik und des Ingenieurwesens Anwendung findet. Für das dünne Faltungsproblem nehmen wir an, dass die Eingabe- und Ausgabevektoren höchstens t Einträge ungleich Null haben, und das Ziel ist, Algorithmen mit Laufzeiten in Abhängigkeit von t zu entwickeln. Für den speziellen Fall, dass alle Einträge nicht-negativ sind, was insbesondere für den Entwurf von Algorithmen relevant ist, ist seit zwanzig Jahren bekannt, dass dünn besetzte Faltungen in nahezu linearer randomisierter Zeit O(t \log^2 n) berechnet werden können. In dieser Arbeit entwickeln wir einen randomisierten Algorithmus mit Laufzeit O(t \log t), der (unter milden Annahmen) optimal ist, und den ersten nahezu linearen deterministischen Algorithmus für dünne nichtnegative Faltungen. Wir stellen auch eine Anwendung dieser Ergebnisse vor, die zu scheinbar unverwandten feinkörnigen unteren Schranken gegen Distanzorakel in Graphen führt. (2) Sublineare Editierdistanz: Die Editierdistanz zweier Zeichenketten ist ein gut untersuchtes Ähnlichkeitsmaß mit zahlreichen Anwendungen in der Computerbiologie. Während die exakte Berechnung der Editierdistanz nachweislich quadratische Zeit erfordert, hat eine lange Reihe von Forschungsarbeiten zu einem Approximationsalgorithmus mit konstantem Faktor in fast-linearer Zeit geführt. Überraschenderweise ist es auch möglich, die Editierdistanz k innerhalb eines großen Faktors O(k) in sublinearer Zeit O~(n/k + poly(k)) zu approximieren. Wir verbessern drastisch den Approximationsfaktor der bekannten sublinearen Algorithmen von O(k) auf k^{o(1)} unter Beibehaltung der O(n/k + poly(k))-Laufzeit

    Near-Linear Time Insertion-Deletion Codes and (1+ε\varepsilon)-Approximating Edit Distance via Indexing

    Full text link
    We introduce fast-decodable indexing schemes for edit distance which can be used to speed up edit distance computations to near-linear time if one of the strings is indexed by an indexing string II. In particular, for every length nn and every ε>0\varepsilon >0, one can in near linear time construct a string IΣnI \in \Sigma'^n with Σ=Oε(1)|\Sigma'| = O_{\varepsilon}(1), such that, indexing any string SΣnS \in \Sigma^n, symbol-by-symbol, with II results in a string SΣnS' \in \Sigma''^n where Σ=Σ×Σ\Sigma'' = \Sigma \times \Sigma' for which edit distance computations are easy, i.e., one can compute a (1+ε)(1+\varepsilon)-approximation of the edit distance between SS' and any other string in O(npoly(logn))O(n \text{poly}(\log n)) time. Our indexing schemes can be used to improve the decoding complexity of state-of-the-art error correcting codes for insertions and deletions. In particular, they lead to near-linear time decoding algorithms for the insertion-deletion codes of [Haeupler, Shahrasbi; STOC `17] and faster decoding algorithms for list-decodable insertion-deletion codes of [Haeupler, Shahrasbi, Sudan; ICALP `18]. Interestingly, the latter codes are a crucial ingredient in the construction of fast-decodable indexing schemes

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before
    corecore