53 research outputs found

    Four-Round Concurrent Non-Malleable Commitments from One-Way Functions

    Get PDF
    How many rounds and which assumptions are required for concurrent non-malleable commitments? The above question has puzzled researchers for several years. Pass in [TCC 2013] showed a lower bound of 3 rounds for the case of black-box reductions to falsifiable hardness assumptions with respect to polynomial-time adversaries. On the other side, Goyal [STOC 2011], Lin and Pass [STOC 2011] and Goyal et al. [FOCS 2012] showed that one-way functions (OWFs) are sufficient with a constant number of rounds. More recently Ciampi et al. [CRYPTO 2016] showed a 3-round construction based on subexponentially strong one-way permutations. In this work we show as main result the first 4-round concurrent non-malleable commitment scheme assuming the existence of any one-way function. Our approach builds on a new security notion for argument systems against man-in-the-middle attacks: Simulation-Witness-Independence. We show how to construct a 4-round one-many simulation-witnesses-independent argument system from one-way functions. We then combine this new tool in parallel with a weak form of non-malleable commitments constructed by Goyal et al. in [FOCS 2014] obtaining the main result of our work

    Constant-Round Concurrent Non-Malleable Commitments and Decommitments

    Get PDF
    In this paper we consider commitment schemes that are secure against concurrent poly-time man-in-the-middle (cMiM) attacks. Under such attacks, two possible notions of security for commitment schemes have been proposed in the literature: concurrent non-malleability with respect to commitment and concurrent non-malleability with respect to decommitment (i.e., opening). After the original notion of non-malleability introduced by [Dolev, Dwork and Naor STOC 91] that is based on the independence of the committed and decommitted message, a new and stronger notion of non-malleability has been given in [Pass and Rosen STOC 05] by requiring that for any man-in-the-middle adversary there is a stand-alone adversary that succeeds with the same probability. Under this stronger security notion, a constant-round commitment scheme that is concurrent non-malleable only with respect to commitment has been given in [Pass and Rosen FOCS 05] for the plain model, thus leaving as an open problem the construction of a constant-round concurrent non-malleable commitments with respect to decommitment. In other words, in [Pass and Rosen FOCS 05] security against adversaries that mount concurrent man-in-the-middle attacks is guaranteed only during the commitment phase (under their stronger notion of non-malleability). The main result of this paper is a commitment scheme that is concurrent non-malleable with respect to both commitment and decommitment, under the stronger notion of [Pass and Rosen STOC 05]. This property protects against cMiM attacks mounted during both commitments and decommitments which is a crucial security requirement in several applications, as in some digital auctions, in which players have to perform both commitments and decommitments. Our scheme uses a constant number of rounds of interaction in the plain model and is the first scheme that enjoys all these properties under the definitions of [Pass and Rosen FOCS 05]. We stress that, exactly as in [Pass and Rosen FOCS 05], we assume that commitments and decommitments are performed in two distinct phases that do not overlap in time

    Concurrent Non-Malleable Commitments (and More) in 3 Rounds

    Get PDF
    The round complexity of commitment schemes secure against man-in-the-middle attacks has been the focus of extensive research for about 25 years. The recent breakthrough of Goyal et al. [22] showed that 3 rounds are sufficient for (one-left, one-right) non-malleable commitments. This result matches a lower bound of [41]. The state of affairs leaves still open the intriguing problem of constructing 3-round concurrent non-malleable commitment schemes. In this paper we solve the above open problem by showing how to transform any 3-round (one-left one-right) non-malleable commitment scheme (with some extractability property) in a 3-round concurrent nonmalleable commitment scheme. Our transform makes use of complexity leveraging and when instantiated with the construction of [22] gives a 3-round concurrent non-malleable commitment scheme from one-way permutations secure w.r.t. subexponential-time adversaries. We also show a 3-round arguments of knowledge and a 3-round identification scheme secure against concurrent man-in-the-middle attacks

    Concurrent Security

    Full text link
    Traditionally, cryptographic protocols are analyzed in a "stand-alone" setting, where a single protocol execution takes place in isolation. In the age of the Internet, however, a great number of executions of different protocols co-exist and are tightly inter-connected. This concurrency severely undermines the foundation of the traditional study of cryptography. Since the early 90's, it has been an important theme in cryptography to address security in such concurrent setting. However, till recently, no satisfactory solutions were proposed for performing general tasks in a concurrently secure way. In this thesis, we resolve "concurrent security"-we exhibit a construction of cryptographic protocols for general tasks that remain secure even in concurrent settings like the Internet. Different from previous works, our construction does not rely on any trusted infrastructure or strong hardness assumptions. As such, our construction broadens the applicability of cryptography by enabling it in more realistic settings and weakening the preconditions it is based on. Beyond the general feasibility result, we also significantly improve the efficiency of secure protocols for performing general tasks even in the standalone setting: We construct constant-round secure protocols for general tasks based on enhanced trapdoor permutations; this yields the first improvement on the round-efficiency-from linear to constant-over the original construction of [GMW87] based on the same assumptions as [GMW87]. Towards our constructions, we identify the key role of "input independence" in achieving concurrent security. Intuitively, if adversaries are forced to act independently in different protocol executions, then concurrency comes for free since it is as if each execution were taking place in isolation. We study two notions of "input independence": Non-malleability and adaptive hardness. Both notions are central tools in cryptography and have been extensively studied. A main question is to determine the number of rounds needed for protocols satisfying these notions. In this thesis, we completely resolve the round-complexity of these two notions in the context of commitments: We construct constantround non-malleable commitments-introduced by [DDN91]-and [omega](log n)-round adaptively hard commitments-or CCA-secure commitments introduced in this thesis-from the minimal assumption of one-way functions without using any trusted infrastructure; the latter construction as we show is round optimal

    Round-Efficient Black-Box Construction of Composable Multi-Party Computation

    Get PDF
    We present a round-efficient black-box construction of a general multi-party computation (MPC) protocol that satisfies composability in the plain model. The security of our protocol is proven in the angel-based UC framework [Prabhakaran and Sahai, STOC\u2704] under the minimal assumption of the existence of semi-honest oblivious transfer protocols. The round complexity of our protocol is \max(\tilde{O}(\log^2 n), O(R_{OT})) when the round complexity of the underlying oblivious transfer protocol is R_{OT}. Since constant-round semi-honest oblivious transfer protocols can be constructed under standard assumptions (such as the existence of enhanced trapdoor permutations), our result gives a \tilde{O}(\log^2 n)-round protocol under these assumptions. Previously, only an O(\max(n^{\epsilon}, R_{OT}))-round protocol was shown, where \epsilon>0 is an arbitrary constant. We obtain our MPC protocol by constructing a \tilde{O}(\log^2 n)-round CCA-secure commitment scheme in a black-box way under the assumption of the existence of one-way functions

    New-Age Cryptography

    Get PDF
    We introduce new and general complexity theoretic hardness assumptions. These assumptions abstract out concrete properties of a random oracle and are significantly stronger than traditional cryptographic hardness assumptions; however, assuming their validity we can resolve a number of longstandingopen problems in cryptography

    A Unified Approach to Constructing Black-box UC Protocols in Trusted Setup Models

    Get PDF
    We present a unified framework for obtaining black-box constructions of Universal Composable (UC) protocol in trusted setup models. Our result is analogous to the unified framework of Lin, Pass, and Venkitasubramaniam [STOC\u2709, Asiacrypt\u2712] that, however, only yields non-black-box constructions of UC protocols. Our unified framework shows that to obtain black-box constructions of UC protocols, it suffices to implement a special purpose commitment scheme that is, in particular, concurrently extractable using a given trusted setup. Using our framework, we improve black-box constructions in the common reference string and tamper-proof hardware token models by weakening the underlying computational and setup assumptions

    4-Round Concurrent Non-Malleable Commitments from One-Way Functions

    Get PDF
    How many rounds and which computational assumptions are needed for concurrent non-malleable commitments? The above question has puzzled researchers for several years. Recently, Pass in [TCC 2013] proved a lower bound of 3 rounds when security is proven through black-box reductions to falsifiable assumptions. On the other side, positive results of Goyal [STOC 2011], Lin and Pass [STOC 2011] and Goyal et al. [FOCS 2012] showed that one-way functions are sufficient with a constant (at least 6) number of rounds. More recently Ciampi et al. [CRYPTO 2016] showed that subexponentially strong one-way permutations are sufficient with just 3 rounds. In this work we almost close the above open question by showing a 4-round concurrent non-malleable commitment scheme that only needs one-way functions. Our main technique consists in showing how to upgrade basic forms of non-malleability (i.e., non-malleability w.r.t. non-aborting adversaries) to full-fledged non-malleability without penalizing the round complexity

    A New Approach to Efficient Non-Malleable Zero-Knowledge

    Get PDF
    Non-malleable zero-knowledge, originally introduced in the context of man-in-the-middle attacks, serves as an important building block to protect against concurrent attacks where different protocols may coexist and interleave. While this primitive admits almost optimal constructions in the plain model, they are several orders of magnitude slower in practice than standalone zero-knowledge. This is in sharp contrast to non-malleable commitments where practical constructions (under the DDH assumption) have been known for a while. We present a new approach for constructing efficient non-malleable zero-knowledge for all languages in NP, based on a new primitive called instance-based non-malleable commitment (IB-NMC). We show how to construct practical IB-NMC by leveraging the fact that simulators of sub-linear zero-knowledge protocols can be much faster than the honest prover algorithm. With an efficient implementation of IB-NMC, our approach yields the first general-purpose non-malleable zero-knowledge protocol that achieves practical efficiency in the plain model. All of our protocols can be instantiated from symmetric primitives such as block-ciphers and hash functions, have reasonable efficiency in practice, and are general-purpose. Our techniques also yield the first efficient non-malleable commitment scheme without public-key assumptions

    Trapdoor commitment schemes and their applications

    Get PDF
    Informally, commitment schemes can be described by lockable steely boxes. In the commitment phase, the sender puts a message into the box, locks the box and hands it over to the receiver. On one hand, the receiver does not learn anything about the message. On the other hand, the sender cannot change the message in the box anymore. In the decommitment phase the sender gives the receiver the key, and the receiver then opens the box and retrieves the message. One application of such schemes are digital auctions where each participant places his secret bid into a box and submits it to the auctioneer. In this thesis we investigate trapdoor commitment schemes. Following the abstract viewpoint of lockable boxes, a trapdoor commitment is a box with a tiny secret door. If someone knows the secret door, then this person is still able to change the committed message in the box, even after the commitment phase. Such trapdoors turn out to be very useful for the design of secure cryptographic protocols involving commitment schemes. In the first part of the thesis, we formally introduce trapdoor commitments and extend the notion to identity-based trapdoors, where trapdoors can only be used in connection with certain identities. We then recall the most popular constructions of ordinary trapdoor protocols and present new solutions for identity-based trapdoors. In the second part of the thesis, we show the usefulness of trapdoors in commitment schemes. Deploying trapdoors we construct efficient non-malleable commitment schemes which basically guarantee indepency of commitments. Furthermore, applying (identity-based) trapdoor commitments we secure well-known identification protocols against a new kind of attack. And finally, by means of trapdoors, we show how to construct composable commitment schemes that can be securely executed as subprotocols within complex protocols
    • …
    corecore