5 research outputs found

    Constant-Distortion Embeddings of Hausdorff Metrics into Constant-Dimensional l_p Spaces

    Get PDF
    We show that the Hausdorff metric over constant-size pointsets in constant-dimensional Euclidean space admits an embedding into constant-dimensional l_{infinity} space with constant distortion. More specifically for any s,d>=1, we obtain an embedding of the Hausdorff metric over pointsets of size s in d-dimensional Euclidean space, into l_{infinity}^{s^{O(s+d)}} with distortion s^{O(s+d)}. We remark that any metric space M admits an isometric embedding into l_{infinity} with dimension proportional to the size of M. In contrast, we obtain an embedding of a space of infinite size into constant-dimensional l_{infinity}. We further improve the distortion and dimension trade-offs by considering probabilistic embeddings of the snowflake version of the Hausdorff metric. For the case of pointsets of size s in the real line of bounded resolution, we obtain a probabilistic embedding into l_1^{O(s*log(s()} with distortion O(s)

    Multi-resolution sketches and locality sensitive hashing for fast trajectory processing

    Get PDF
    International audienceSearching for similar GPS trajectories is a fundamental problem that faces challenges of large data volume and intrinsic complexity of trajectory comparison. In this paper, we present a suite of sketches for trajectory data that drastically reduce the computation costs associated with near neighbor search, distance estimation, clustering and classification, and subtrajectory detection. Apart from summarizing the dataset, our sketches have two uses. First, we obtain simple provable locality sensitive hash families for both the Hausdorff and Fréchet distance measures, useful in near neighbour queries. Second, we build a data structure called MRTS (Multi Resolution Trajectory Sketch), which contains sketches of varying degrees of detail. The MRTS is a user-friendly, compact representation of the dataset that allows to efficiently answer various other types of queries. Moreover, MRTS can be used in a dynamic setting with fast insertions of trajectories into the database. Experiments on real data show effective locality sensitive hashing substantially improves near neighbor search time. Distances defined on the skteches show good correlation with Fréchet and Hausdorff distances

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore