207 research outputs found

    Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

    Get PDF
    In this paper we provide sub-linear algorithms for several fundamental problems in the setting in which the input graph excludes a fixed minor, i.e., is a minor-free graph. In particular, we provide the following algorithms for minor-free unbounded degree graphs. 1) A tester for Hamiltonicity with two-sided error with poly(1/?)-query complexity, where ? is the proximity parameter. 2) A local algorithm, as defined by Rubinfeld et al. (ICS 2011), for constructing a spanning subgraph with almost minimum weight, specifically, at most a factor (1+?) of the optimum, with poly(1/?)-query complexity. Both our algorithms use partition oracles, a tool introduced by Hassidim et al. (FOCS 2009), which are oracles that provide access to a partition of the graph such that the number of cut-edges is small and each part of the partition is small. The polynomial dependence in 1/? of our algorithms is achieved by combining the recent poly(d/?)-query partition oracle of Kumar-Seshadhri-Stolman (ECCC 2021) for minor-free graphs with degree bounded by d. For bounded degree minor-free graphs we introduce the notion of covering partition oracles which is a relaxed version of partition oracles and design a poly(d/?)-time covering partition oracle for this family of graphs. Using our covering partition oracle we provide the same results as above (except that the tester for Hamiltonicity has one-sided error) for minor-free bounded degree graphs, as well as showing that any property which is monotone and additive (e.g. bipartiteness) can be tested in minor-free graphs by making poly(d/?)-queries. The benefit of using the covering partition oracle rather than the partition oracle in our algorithms is its simplicity and an improved polynomial dependence in 1/? in the obtained query complexity

    All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

    Get PDF
    For an undirected nn-vertex graph GG with non-negative edge-weights, we consider the following type of query: given two vertices ss and tt in GG, what is the weight of a minimum stst-cut in GG? We solve this problem in preprocessing time O(nlog3n)O(n\log^3 n) for graphs of bounded genus, giving the first sub-quadratic time algorithm for this class of graphs. Our result also improves by a logarithmic factor a previous algorithm by Borradaile, Sankowski and Wulff-Nilsen (FOCS 2010) that applied only to planar graphs. Our algorithm constructs a Gomory-Hu tree for the given graph, providing a data structure with space O(n)O(n) that can answer minimum-cut queries in constant time. The dependence on the genus of the input graph in our preprocessing time is 2O(g2)2^{O(g^2)}

    Faster Shortest Paths in Dense Distance Graphs, with Applications

    Full text link
    We show how to combine two techniques for efficiently computing shortest paths in directed planar graphs. The first is the linear-time shortest-path algorithm of Henzinger, Klein, Subramanian, and Rao [STOC'94]. The second is Fakcharoenphol and Rao's algorithm [FOCS'01] for emulating Dijkstra's algorithm on the dense distance graph (DDG). A DDG is defined for a decomposition of a planar graph GG into regions of at most rr vertices each, for some parameter r<nr < n. The vertex set of the DDG is the set of Θ(n/r)\Theta(n/\sqrt r) vertices of GG that belong to more than one region (boundary vertices). The DDG has Θ(n)\Theta(n) arcs, such that distances in the DDG are equal to the distances in GG. Fakcharoenphol and Rao's implementation of Dijkstra's algorithm on the DDG (nicknamed FR-Dijkstra) runs in O(nlog(n)r1/2logr)O(n\log(n) r^{-1/2} \log r) time, and is a key component in many state-of-the-art planar graph algorithms for shortest paths, minimum cuts, and maximum flows. By combining these two techniques we remove the logn\log n dependency in the running time of the shortest-path algorithm, making it O(nr1/2log2r)O(n r^{-1/2} \log^2r). This work is part of a research agenda that aims to develop new techniques that would lead to faster, possibly linear-time, algorithms for problems such as minimum-cut, maximum-flow, and shortest paths with negative arc lengths. As immediate applications, we show how to compute maximum flow in directed weighted planar graphs in O(nlogp)O(n \log p) time, where pp is the minimum number of edges on any path from the source to the sink. We also show how to compute any part of the DDG that corresponds to a region with rr vertices and kk boundary vertices in O(rlogk)O(r \log k) time, which is faster than has been previously known for small values of kk

    Improved Bounds for Shortest Paths in Dense Distance Graphs

    Get PDF
    We study the problem of computing shortest paths in so-called dense distance graphs, a basic building block for designing efficient planar graph algorithms. Let G be a plane graph with a distinguished set partial{G} of boundary vertices lying on a constant number of faces of G. A distance clique of G is a complete graph on partial{G} encoding all-pairs distances between these vertices. A dense distance graph is a union of possibly many unrelated distance cliques. Fakcharoenphol and Rao [Fakcharoenphol and Rao, 2006] proposed an efficient implementation of Dijkstra\u27s algorithm (later called FR-Dijkstra) computing single-source shortest paths in a dense distance graph. Their algorithm spends O(b log^2{n}) time per distance clique with b vertices, even though a clique has b^2 edges. Here, n is the total number of vertices of the dense distance graph. The invention of FR-Dijkstra was instrumental in obtaining such results for planar graphs as nearly-linear time algorithms for multiple-source-multiple-sink maximum flow and dynamic distance oracles with sublinear update and query bounds. At the heart of FR-Dijkstra lies a data structure updating distance labels and extracting minimum labeled vertices in O(log^2{n}) amortized time per vertex. We show an improved data structure with O((log^2{n})/(log^2 log n)) amortized bounds. This is the first improvement over the data structure of Fakcharoenphol and Rao in more than 15 years. It yields improved bounds for all problems on planar graphs, for which computing shortest paths in dense distance graphs is currently a bottleneck

    A characterization of graph properties testable for general planar graphs with one-sided error (it's all about forbidden subgraphs)

    Get PDF
    The problem of characterizing testable graph properties (properties that can be tested with a number of queries independent of the input size) is a fundamental problem in the area of property testing. While there has been some extensive prior research characterizing testable graph properties in the dense graphs model and we have good understanding of the bounded degree graphs model, no similar characterization has been known for general graphs, with no degree bounds. In this paper we take on this major challenge and consider the problem of characterizing all testable graph properties in general planar graphs. We consider the model in which a general planar graph can be accessed by the random neighbor oracle that allows access to any given vertex and access to a random neighbor of a given vertex. We show that, informally, a graph property P is testable with one-sided error for general planar graphs if and only if testing P can be reduced to testing for a finite family of finite forbidden subgraphs. While our presentation focuses on planar graphs, our approach extends easily to general minor-free graphs. Our analysis of the necessary condition relies on a recent construction of canonical testers in the random neighbor oracle model that is applied here to the one-sided error model for testing in planar graphs. The sufficient condition in the characterization reduces the problem to the task of testing H-freeness in planar graphs, and is the main and most challenging technical contribution of the paper: we show that for planar graphs (with arbitrary degrees), the property of being H-free is testable with one-sided error for every finite graph H, in the random neighbor oracle model
    corecore