82,297 research outputs found

    A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes

    Full text link
    Conflict-avoiding codes are used in the multiple-access collision channel without feedback. The number of codewords in a conflict-avoiding code is the number of potential users that can be supported in the system. In this paper, a new upper bound on the size of conflict-avoiding codes is proved. This upper bound is general in the sense that it is applicable to all code lengths and all Hamming weights. Several existing constructions for conflict-avoiding codes, which are known to be optimal for Hamming weights equal to four and five, are shown to be optimal for all Hamming weights in general.Comment: 10 pages, 1 figur

    Ethics in a Global Society (Chapter 12 of Organizational Ethics: A Practical Approach

    Full text link
    Globalization is having a dramatic impact on life in the 21st century. We inhabit a global society knit together by free trade, international travel, immigration, satellite communication systems, and the Internet. In this interconnected world, ethical responsibilities extend beyond national boundaries. Decisions about raw materials, manufacturing, outsourcing, farm subsidies, investments, marketing strategies, suppliers, safety standards, and energy use made in one country have ramifications for residents of other parts of the world. Organizational citizenship is now played out on a global stage. Businesses, in particular, are being urged to take on a larger role in solving the world\u27s social problems

    A single-photon sampling architecture for solid-state imaging

    Full text link
    Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as LiDAR and positron emission tomography. The demands placed on on-chip readout circuitry imposes stringent trade-offs between fill factor and spatio-temporal resolution, causing many contemporary designs to severely underutilize the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs, thereby also reducing both cost and power consumption. The design relies on a multiplexing technique based on binary interconnection matrices. We provide optimized instances of these matrices for various sensor parameters and give explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization result of a 120x120 photodiode sensor on a 30um x 30um pitch with a 40ps time resolution and an estimated fill factor of approximately 70%, using only 161 TDCs. The design guarantees registration and unique recovery of up to 4 simultaneous photon arrivals using a fast decoding algorithm. In a series of realistic simulations of scintillation events in clinical positron emission tomography the design was able to recover the spatio-temporal location of 98.6% of all photons that caused pixel firings.Comment: 24 pages, 3 figures, 5 table

    Effects of energy storage systems grid code requirements on interface protection performances in low voltage networks

    Get PDF
    The ever-growing penetration of local generation in distribution networks and the large diffusion of energy storage systems (ESSs) foreseen in the near future are bound to affect the effectiveness of interface protection systems (IPSs), with negative impact on the safety of medium voltage (MV) and low voltage (LV) systems. With the scope of preserving the main network stability, international and national grid connection codes have been updated recently. Consequently, distributed generators (DGs) and storage units are increasingly called to provide stabilizing functions according to local voltage and frequency. This can be achieved by suitably controlling the electronic power converters interfacing small-scale generators and storage units to the network. The paper focuses on the regulating functions required to storage units by grid codes currently in force in the European area. Indeed, even if such regulating actions would enable local units in participating to network stability under normal steady-state operating conditions, it is shown through dynamic simulations that they may increase the risk of unintentional islanding occurrence. This means that dangerous operating conditions may arise in LV networks in case dispersed generators and storage systems are present, even if all the end-users are compliant with currently applied connection standards

    A new generation 99 line Matlab code for compliance Topology Optimization and its extension to 3D

    Full text link
    Compact and efficient Matlab implementations of compliance Topology Optimization (TO) for 2D and 3D continua are given, consisting of 99 and 125 lines respectively. On discretizations ranging from 3â‹…1043\cdot 10^{4} to 4.8â‹…1054.8\cdot10^{5} elements, the 2D version, named top99neo, shows speedups from 2.55 to 5.5 times compared to the well-known top88 code (Andreassen-etal 2011). The 3D version, named top3D125, is the most compact and efficient Matlab implementation for 3D TO to date, showing a speedup of 1.9 times compared to the code of Amir-etal 2014, on a discretization with 2.2â‹…1052.2\cdot10^{5} elements. For both codes, improvements are due to much more efficient procedures for the assembly and implementation of filters and shortcuts in the design update step. The use of an acceleration strategy, yielding major cuts in the overall computational time, is also discussed, stressing its easy integration within the basic codes.Comment: 17 pages, 8 Figures, 4 Table

    Determination of the exponent gamma for SAWs on the two-dimensional Manhattan lattice

    Full text link
    We present a high-statistics Monte Carlo determination of the exponent gamma for self-avoiding walks on a Manhattan lattice in two dimensions. A conservative estimate is \gamma \gtapprox 1.3425(3), in agreement with the universal value 43/32 on regular lattices, but in conflict with predictions from conformal field theory and with a recent estimate from exact enumerations. We find strong corrections to scaling that seem to indicate the presence of a non-analytic exponent Delta < 1. If we assume Delta = 11/16 we find gamma = 1.3436(3), where the error is purely statistical.Comment: 24 pages, LaTeX2e, 4 figure
    • …
    corecore