167,662 research outputs found

    Two problems on the generation of linear extensions of posets

    Get PDF
    We describe two results on the generation of linear extensions of a poset. First, we prove that the linear extensions of every poset can be generated by insertion. Next, we describe a constant average time algorithm to generate the linear extensions of a series-parallel poset in lexicographic order .Apresentamos dois resultados sobre a geração de extensões lineares de um poset. Primeiro provamos que as extensões lineares de todo poset podem ser geradas por inserção. A seguir, descrevemos um algoritmo de tempo médio constante para gerar as extensões lineares de um poset série-paralelo em ordem lexicográfica

    Interpolation in local theory extensions

    Full text link
    In this paper we study interpolation in local extensions of a base theory. We identify situations in which it is possible to obtain interpolants in a hierarchical manner, by using a prover and a procedure for generating interpolants in the base theory as black-boxes. We present several examples of theory extensions in which interpolants can be computed this way, and discuss applications in verification, knowledge representation, and modular reasoning in combinations of local theories.Comment: 31 pages, 1 figur

    A Model-Based Frequency Constraint for Mining Associations from Transaction Data

    Full text link
    Mining frequent itemsets is a popular method for finding associated items in databases. For this method, support, the co-occurrence frequency of the items which form an association, is used as the primary indicator of the associations's significance. A single user-specified support threshold is used to decided if associations should be further investigated. Support has some known problems with rare items, favors shorter itemsets and sometimes produces misleading associations. In this paper we develop a novel model-based frequency constraint as an alternative to a single, user-specified minimum support. The constraint utilizes knowledge of the process generating transaction data by applying a simple stochastic mixture model (the NB model) which allows for transaction data's typically highly skewed item frequency distribution. A user-specified precision threshold is used together with the model to find local frequency thresholds for groups of itemsets. Based on the constraint we develop the notion of NB-frequent itemsets and adapt a mining algorithm to find all NB-frequent itemsets in a database. In experiments with publicly available transaction databases we show that the new constraint provides improvements over a single minimum support threshold and that the precision threshold is more robust and easier to set and interpret by the user

    Electric Charge Quantization

    Full text link
    Experimentally it has been known for a long time that the electric charges of the observed particles appear to be quantized. An approach to understanding electric charge quantization that can be used for gauge theories with explicit U(1)U(1) factors -- such as the standard model and its variants -- is pedagogically reviewed and discussed in this article. This approach uses the allowed invariances of the Lagrangian and their associated anomaly cancellation equations. We demonstrate that charge may be de-quantized in the three-generation standard model with massless neutrinos, because differences in family-lepton--numbers are anomaly-free. We also review the relevant experimental limits. Our approach to charge quantization suggests that the minimal standard model should be extended so that family-lepton--number differences are explicitly broken. We briefly discuss some candidate extensions (e.g. the minimal standard model augmented by Majorana right-handed neutrinos).Comment: 18 pages, LaTeX, UM-P-92/5

    Fully automatic worst-case execution time analysis for MATLAB/Simulink models

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”In today's technical world (e.g., in the automotive industry), more and more purely mechanical components get replaced by electro-mechanical ones. Thus the size and complexity of embedded systems steadily increases. To cope with this development, comfortable software engineering tools are being developed that allow a more functionality-oriented development of applications. The paper demonstrates how worst-case execution time (WCET) analysis is integrated into such a high-level application design and simulation tool MATLAB/Simulink-thus providing a higher-level interface to WCET analysis. The MATLAB/Simulink extensions compute and display worst-case timing data for all blocks of a MATLAB/Simulink simulation, which gives the developer of an application valuable feedback about the correct timing of the application being developed. The solution facilitates a fully-automated WCET analysis, i.e., in contrast to existing approaches the programmer does not have to provide path information

    High-order harmonic generation driven by chirped laser pulses induced by linear and non linear phenomena

    Full text link
    We present a theoretical study of high-order harmonic generation (HHG) driven by ultrashort optical pulses with different kind of chirps. The goal of the present work is perform a detailed study to clarify the relevant parameters in the chirped pulses to achieve a noticeable cut-off extensions in HHG. These chirped pulses are generated using both linear and nonlinear dispersive media.The description of the origin of the physical mechanisms responsible of this extension is, however, not usually reported with enough detail in the literature. The study of the behaviour of the harmonic cut-off with these kind of pulses is carried out in the classical context, by the integration of the Newton-Lorentz equation complemented with the quantum approach, based on the integration of the time dependent Schr\"odinger equation in full dimensions (TDSE-3D), we are able to understand the underlying physics.Comment: 13 pages, 8 figure
    • …
    corecore