128 research outputs found

    Using Digital Hydraulics in Secondary Control of Motor Drive

    Get PDF
    Due to the increased focus on pollution and global warming, there is a demand for energy efficient systems. This also applies to the offshore oil and gas industry. Normally used hydraulic systems tend to suffer from low energy efficiency, especially when operating with part loads. In the last decades, a new pump and motor technology has experienced increased interest due to the potential of high energy efficiency in a wide range of operation conditions. This new technology is called digital displacement machine technology. Nowadays, there is a desire from the offshore oil and gas industry to use this digital displacement machine technology to design highly efficient hydraulic winch drive systems. The main objectives of the work presented in this thesis are to design a controller for a digital displacement winch drive system and evaluate its control performance. The design of a controller is one part of the work needed to realizing a winch drive system with digital displacement machines. A winch with a lifting capacity of 20000 kg and a drum capacity of 3600 m of wire rope is used as a case study. Digital displacement machines have strict requirements for the on/off valves used to control each cylinder chamber. It is important to activate the valves at optimal times to ensure operation with high energy efficiency and low pressure and flow peaks. Only a small mistiming of the valves will affect the performance of the digital displacement machine significantly. One of the first contributions presented in this thesis is a method for defining how early or late the valves can be timed without reducing the energy efficiency significantly. The control of digital displacement machines is complicated and non-conventional. Each cylinder can be controlled individually and multiple displacement strategies can be used to achieve the same displacement. Each displacement strategy has its dynamic response characteristics and energy efficiency characteristics. The dynamic response characteristics of the drive system are highly relevant when designing control systems. Therefore, in addition to the conventional classical controller, also a suitable displacement strategy must be designed. Designing controllers for digital displacement machines are therefore more complex than designing controllers for conventional hydraulic machines. One of the main focuses of this project has been to analyze the transient and steady state response characteristics of different displacement strategies. In all, three displacement strategies are examined: full stroke displacement strategy, partial stroke displacement strategy and sequential partial stroke displacement strategy. Also, during this work, a new version of the partial stroke displacement strategy has been developed and included in the dynamic response analysis. The dynamic response analysis is a simulation study, where the simulation model is experimentally validated. The experimental work is conducted on a prototype of a single cylinder digital displacement machine. The prototype consists of a five cylinder radial piston motor where one cylinder is modified to operate with the digital displacement technology. The rest of the cylinders are not changed and not used. In addition to validating the simulation model, the prototype is used to test all of the analyzed displacement strategies in low speed operation. The results from the dynamic response analysis are used to select the displacement strategy that is most suited for use in a winch drive system. Then, controllers for the digital displacement winch drive system are developed. The main focus in the control design phase is not to design a new type of controller but to examine already developed controllers and fit them to a winch system driven by digital displacement machines. In the end, the simulation results of the designed controllers are shown and the results are discussed. The simulation results show that digital displacement machines can be used in winch drive systems and achieve both high motion control performance and wire tension control performance.publishedVersio

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Modelling and control of subsea installation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Non-Linear Robust Observers For Systems With Non-Collocated Sensors And Actuators

    Get PDF
    Challenges in controlling highly nonlinear systems are not limited to the development of sophisticated control algorithms that are tolerant to significant modeling imprecision and external disturbances. Additional challenges stem from the implementation of the control algorithm such as the availability of the state variables needed for the computation of the control signals, and the adverse effects induced by non-collocated sensors and actuators. The present work investigates the adverse effects of non-collocated sensors and actuators on the phase characteristics of flexible structures and the ensuing implications on the performance of structural controllers. Two closed-loop systems are considered and their phase angle contours have been generated as functions of the normalized sensor location and the excitation frequency. These contours were instrumental in the development of remedial actions for rendering structural controllers immune to the detrimental effects of non-collocated sensors and actuators. Moreover, the current work has focused on providing experimental validation for the robust performances of a self-tuning observer and a sliding mode observer. The observers are designed based on the variable structure systems theory and the self-tuning fuzzy logic scheme. Their robustness and self-tuning characteristics allow one to use an imprecise model of the system and eliminate the need for the extensive tuning associated with a fixed rule-based expert fuzzy inference system. The first phase of the experimental work was conducted in a controlled environment on a flexible spherical robotic manipulator whose natural frequencies are configuration-dependent. Both controllers have yielded accurate estimates of the required state variables in spite of significant modeling imprecision. The observers were also tested under a completely uncontrolled environment, which involves a 16-ft boat operating in open-water under different sea states. Such an experimental work necessitates the development of a supervisory control algorithm to perform PTP tasks, prescribed throttle arm and steering tasks, surge speed and heading tracking tasks, or recovery maneuvers. This system has been implemented herein to perform prescribed throttle arm and steering control tasks based on estimated rather than measured state variables. These experiments served to validate the observers in a completely uncontrolled environment and proved their viability as reliable techniques for providing accurate estimates for the required state variables

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area
    corecore