47,827 research outputs found

    Toward accurate polynomial evaluation in rounded arithmetic

    Get PDF
    Given a multivariate real (or complex) polynomial pp and a domain D\cal D, we would like to decide whether an algorithm exists to evaluate p(x)p(x) accurately for all xāˆˆDx \in {\cal D} using rounded real (or complex) arithmetic. Here ``accurately'' means with relative error less than 1, i.e., with some correct leading digits. The answer depends on the model of rounded arithmetic: We assume that for any arithmetic operator op(a,b)op(a,b), for example a+ba+b or aā‹…ba \cdot b, its computed value is op(a,b)ā‹…(1+Ī“)op(a,b) \cdot (1 + \delta), where āˆ£Ī“āˆ£| \delta | is bounded by some constant Ļµ\epsilon where 0<Ļµā‰Ŗ10 < \epsilon \ll 1, but Ī“\delta is otherwise arbitrary. This model is the traditional one used to analyze the accuracy of floating point algorithms.Our ultimate goal is to establish a decision procedure that, for any pp and D\cal D, either exhibits an accurate algorithm or proves that none exists. In contrast to the case where numbers are stored and manipulated as finite bit strings (e.g., as floating point numbers or rational numbers) we show that some polynomials pp are impossible to evaluate accurately. The existence of an accurate algorithm will depend not just on pp and D\cal D, but on which arithmetic operators and which constants are are available and whether branching is permitted. Toward this goal, we present necessary conditions on pp for it to be accurately evaluable on open real or complex domains D{\cal D}. We also give sufficient conditions, and describe progress toward a complete decision procedure. We do present a complete decision procedure for homogeneous polynomials pp with integer coefficients, {\cal D} = \C^n, and using only the arithmetic operations ++, āˆ’- and ā‹…\cdot.Comment: 54 pages, 6 figures; refereed version; to appear in Foundations of Computational Mathematics: Santander 2005, Cambridge University Press, March 200

    Evaluation of Tweedie exponential dispersion model densities by Fourier inversion

    Get PDF
    The Tweedie family of distributions is a family of exponential dispersion models with power variance functions V (Ī¼) = Ī¼^p for p not between (0, 1). These distributions do not generally have density functions that can be written in closed form. However, they have simple moment generating functions, so the densities can be evaluated numerically by Fourier inversion of the characteristic functions. This paper develops numerical methods to make this inversion fast and accurate. Acceleration techniques are used to handle oscillating integrands. A range of analytic results are used to ensure convergent computations and to reduce the complexity of the parameter space. The Fourier inversion method is compared to a series evaluation method and the two methods are found to be complementary in that they perform well in different regions of the parameter space
    • ā€¦
    corecore