5,108 research outputs found

    Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach

    Get PDF
    We study optimal investment in a financial market having a finite number of assets from a signal processing perspective. We investigate how an investor should distribute capital over these assets and when he should reallocate the distribution of the funds over these assets to maximize the cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using "threshold rebalanced portfolios", where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations can be readily extended to markets having more than two stocks, where these extensions are pointed out in the paper. As predicted from our derivations, we significantly improve the achieved wealth over portfolio selection algorithms from the literature on historical data sets.Comment: Submitted to IEEE Transactions on Signal Processin

    A Dual Method For Backward Stochastic Differential Equations with Application to Risk Valuation

    Full text link
    We propose a numerical recipe for risk evaluation defined by a backward stochastic differential equation. Using dual representation of the risk measure, we convert the risk valuation to a stochastic control problem where the control is a certain Radon-Nikodym derivative process. By exploring the maximum principle, we show that a piecewise-constant dual control provides a good approximation on a short interval. A dynamic programming algorithm extends the approximation to a finite time horizon. Finally, we illustrate the application of the procedure to financial risk management in conjunction with nested simulation and on an multidimensional portfolio valuation problem

    Growth-optimal portfolios under transaction costs

    Get PDF
    This paper studies a portfolio optimization problem in a discrete-time Markovian model of a financial market, in which asset price dynamics depend on an external process of economic factors. There are transaction costs with a structure that covers, in particular, the case of fixed plus proportional costs. We prove that there exists a self-financing trading strategy maximizing the average growth rate of the portfolio wealth. We show that this strategy has a Markovian form. Our result is obtained by large deviations estimates on empirical measures of the price process and by a generalization of the vanishing discount method to discontinuous transition operators.Comment: 32 page

    Option pricing with transaction costs using a Markov chain approximation

    Get PDF
    An efficient algorithm is developed to price European options in the presence of proportional transaction costs, using the optimal portfolio framework of Davis (in: Dempster, M.A.H., Pliska, S.R. (Eds.), Mathematics of Derivative Securities. Cambridge University Press, Cambridge, UK). A fair option price is determined by requiring that an infinitesimal diversion of funds into the purchase or sale of options has a neutral effect on achievable utility. This results in a general option pricing formula, in which option prices are computed from the solution of the investor's basic portfolio selection problem, without the need to solve a more complex optimisation problem involving the insertion of the option payoff into the terminal value function. Option prices are computed numerically using a Markov chain approximation to the continuous time singular stochastic optimal control problem, for the case of exponential utility. Comparisons with approximately replicating strategies are made. The method results in a uniquely specified option price for every initial holding of stock, and the price lies within bounds which are tight even as transaction costs become large. A general definition of an option hedging strategy for a utility maximising investor is developed. This involves calculating the perturbation to the optimal portfolio strategy when an option trade is executed

    Option Pricing with Transaction Costs Using a Markov Chain Approximation

    Get PDF
    An e cient algorithm is developed to price European options in the pres- ence of proportional transaction costs, using the optimal portfolio frame- work of Davis (1997). A fair option price is determined by requiring that an in nitesimal diversion of funds into the purchase or sale of options has a neutral e ect on achievable utility. This results in a general option pricing formula, in which option prices are computed from the solution of the investor's basic portfolio selection problem, without the need to solve a more complex optimisation problem involving the insertion of the op- tion payo into the terminal value function. Option prices are computed numerically using a Markov chain approximation to the continuous time singular stochastic optimal control problem, for the case of exponential utility. Comparisons with approximately replicating strategies are made. The method results in a uniquely speci ed option price for every initial holding of stock, and the price lies within bounds which are tight even as transaction costs become large. A general de nition of an option hedg- ing strategy for a utility maximising investor is developed. This involves calculating the perturbation to the optimal portfolio strategy when an option trade is executed

    Evolutionary Stability of Portfolio Rules in Incomplete Markets

    Get PDF
    This paper studies the evolution of market shares of portfolio rules in incomplete markets with short-lived assets. Prices are determined endogenously. The performance of a portfolio rule in the process of continuous reinvestment of wealth is determined by the market share eventually conquered in competition with other portfolio rules. Using random dynamical systems theory, we derive necessary and sufficient conditions for the evolutionary stability of portfolio rules. In the case of Markov (in particular i.i.d.) payoffs these local stability conditions lead to a simple portfolio rule that is the unique evolutionary stable strategy. This rule possesses an explicit representation. Moreover, it is demonstrated that mean-variance optimization is not evolutionary stable while the CAPM-rule always imitates the best portfolio rule and survives.evolutionary finance; portfolio theory; market selection; incomplete markets

    Universal Codes from Switching Strategies

    Get PDF
    We discuss algorithms for combining sequential prediction strategies, a task which can be viewed as a natural generalisation of the concept of universal coding. We describe a graphical language based on Hidden Markov Models for defining prediction strategies, and we provide both existing and new models as examples. The models include efficient, parameterless models for switching between the input strategies over time, including a model for the case where switches tend to occur in clusters, and finally a new model for the scenario where the prediction strategies have a known relationship, and where jumps are typically between strongly related ones. This last model is relevant for coding time series data where parameter drift is expected. As theoretical ontributions we introduce an interpolation construction that is useful in the development and analysis of new algorithms, and we establish a new sophisticated lemma for analysing the individual sequence regret of parameterised models
    • …
    corecore