7,444 research outputs found

    Transport of quantum excitations coupled to spatially extended nonlinear many-body systems

    Full text link
    The role of noise in the transport properties of quantum excitations is a topic of great importance in many fields, from organic semiconductors for technological applications to light-harvesting complexes in photosynthesis. In this paper we study a semi-classical model where a tight-binding Hamiltonian is fully coupled to an underlying spatially extended nonlinear chain of atoms. We show that the transport properties of a quantum excitation are subtly modulated by (i) the specific type (local vs non-local) of exciton-phonon coupling and by (ii) nonlinear effects of the underlying lattice. We report a non-monotonic dependence of the exciton diffusion coefficient on temperature, in agreement with earlier predictions, as a direct consequence of the lattice-induced fluctuations in the hopping rates due to long-wavelength vibrational modes. A standard measure of transport efficiency confirms that both nonlinearity in the underlying lattice and off-diagonal exciton-phonon coupling promote transport efficiency at high temperatures, preventing the Zeno-like quench observed in other models lacking an explicit noise-providing dynamical system

    Coherent quantum transport in disordered systems I: The influence of dephasing on the transport properties and absorption spectra on one-dimensional systems

    Get PDF
    Excitonic transport in static disordered one dimensional systems is studied in the presence of thermal fluctuations that are described by the Haken-Strobl-Reineker model. For short times, non-diffusive behavior is observed that can be characterized as the free-particle dynamics in the Anderson localized system. Over longer time scales, the environment-induced dephasing is sufficient to overcome the Anderson localization caused by the disorder and allow for transport to occur which is always seen to be diffusive. In the limiting regimes of weak and strong dephasing quantum master equations are developed, and their respective scaling relations imply the existence of a maximum in the diffusion constant as a function of the dephasing rate that is confirmed numerically. In the weak dephasing regime, it is demonstrated that the diffusion constant is proportional to the square of the localization length which leads to a significant enhancement of the transport rate over the classical prediction. Finally, the influence of noise and disorder on the absorption spectrum is presented and its relationship to the transport properties is discussed.Comment: 23 pages, 7 figure

    The semiclassical tool in mesoscopic physics

    Full text link
    Semiclassical methods are extremely valuable in the study of transport and thermodynamical properties of ballistic microstructures. By expressing the conductance in terms of classical trajectories, we demonstrate that quantum interference phenomena depend on the underlying classical dynamics of non-interacting electrons. In particular, we are able to calculate the characteristic length of the ballistic conductance fluctuations and the weak localization peak in the case of chaotic dynamics. Integrable cavities are not governed by single scales, but their non-generic behavior can also be obtained from semiclassical expansions (over isolated trajectories or families of trajectories, depending on the system). The magnetic response of a microstructure is enhanced with respect to the bulk (Landau) susceptibility, and the semiclassical approach shows that this enhancement is the largest for integrable geometries, due to the existence of families of periodic orbits. We show how the semiclassical tool can be adapted to describe weak residual disorder, as well as the effects of electron-electron interactions. The interaction contribution to the magnetic susceptibility also depends on the nature of the classical dynamics of non-interacting electrons, and is parametrically larger in the case of integrable systems.Comment: Latex, Cimento-varenna style, 82 pages, 21 postscript figures; lectures given in the CXLIII Course "New Directions in Quantum Chaos" on the International School of Physics "Enrico Fermi"; Varenna, Italy, July 1999; to be published in Proceeding

    Observation of spin Coulomb drag in a two-dimensional electron gas

    Get PDF
    An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin, which offer potential advantages in dissipation, size, and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (-e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electron's spin along a given spatial direction can take on two values, "up" and "down", so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron-electron (e-e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions

    Nonequilibrium mesoscopic transport: a genealogy

    Full text link
    Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems.Comment: 21p

    Persistent memory for a Brownian walker in a random array of obstacles

    Get PDF
    We show that for particles performing Brownian motion in a frozen array of scatterers long-time correlations emerge in the mean-square displacement. Defining the velocity autocorrelation function (VACF) via the second time-derivative of the mean-square displacement, power-law tails govern the long-time dynamics similar to the case of ballistic motion. The physical origin of the persistent memory is due to repeated encounters with the same obstacle which occurs naturally in Brownian dynamics without involving other scattering centers. This observation suggests that in this case the VACF exhibits these anomalies already at first order in the scattering density. Here we provide an analytic solution for the dynamics of a tracer for a dilute planar Lorentz gas and compare our results to computer simulations. Our result support the idea that quenched disorder provides a generic mechanism for persistent correlations irrespective of the microdynamics of the tracer particle.Comment: 11 pages, 4 figures, accepted in Chemical Physic

    SS433's jet trace from ALMA imaging and Global Jet Watch spectroscopy: evidence for post-launch particle acceleration

    Full text link
    We present a comparison of Doppler-shifted H-alpha line emission observed by the Global Jet Watch from freshly-launched jet ejecta at the nucleus of the Galactic microquasar SS433 with subsequent ALMA imaging at mm-wavelengths of the same jet ejecta. There is a remarkable similarity between the transversely-resolved synchrotron emission and the prediction of the jet trace from optical spectroscopy: this is an a priori prediction not an a posteriori fit, confirming the ballistic nature of the jet propagation. The mm-wavelength of the ALMA polarimetry is sufficiently short that the Faraday rotation is negligible and therefore that the observed E-vector directions are accurately orthogonal to the projected local magnetic field. Close to the nucleus the B-field vectors are perpendicular to the direction of propagation. Further out from the nucleus, the B-field vectors that are coincident with the jet instead become parallel to the ridge line; this occurs at a distance where the jet bolides are expected to expand into one another. X-ray variability has also been observed at this location; this has a natural explanation if shocks from the expanding and colliding bolides cause particle acceleration. In regions distinctly separate from the jet ridge line, the fractional polarisation approaches the theoretical maximum for synchrotron emission.Comment: To appear in ApJ Letter

    Superdiffusive heat conduction in semiconductor alloys -- II. Truncated L\'evy formalism for experimental analysis

    Full text link
    Nearly all experimental observations of quasi-ballistic heat flow are interpreted using Fourier theory with modified thermal conductivity. Detailed Boltzmann transport equation (BTE) analysis, however, reveals that the quasi-ballistic motion of thermal energy in semiconductor alloys is no longer Brownian but instead exhibits L\'evy dynamics with fractal dimension α<2\alpha < 2. Here, we present a framework that enables full 3D experimental analysis by retaining all essential physics of the quasi-ballistic BTE dynamics phenomenologically. A stochastic process with just two fitting parameters describes the transition from pure L\'evy superdiffusion as short length and time scales to regular Fourier diffusion. The model provides accurate fits to time domain thermoreflectance raw experimental data over the full modulation frequency range without requiring any `effective' thermal parameters and without any a priori knowledge of microscopic phonon scattering mechanisms. Identified α\alpha values for InGaAs and SiGe match ab initio BTE predictions within a few percent. Our results provide experimental evidence of fractal L\'evy heat conduction in semiconductor alloys. The formalism additionally indicates that the transient temperature inside the material differs significantly from Fourier theory and can lead to improved thermal characterization of nanoscale devices and material interfaces
    • …
    corecore