549 research outputs found

    Sampling and Reconstruction of Spatial Fields using Mobile Sensors

    Get PDF
    Spatial sampling is traditionally studied in a static setting where static sensors scattered around space take measurements of the spatial field at their locations. In this paper we study the emerging paradigm of sampling and reconstructing spatial fields using sensors that move through space. We show that mobile sensing offers some unique advantages over static sensing in sensing time-invariant bandlimited spatial fields. Since a moving sensor encounters such a spatial field along its path as a time-domain signal, a time-domain anti-aliasing filter can be employed prior to sampling the signal received at the sensor. Such a filtering procedure, when used by a configuration of sensors moving at constant speeds along equispaced parallel lines, leads to a complete suppression of spatial aliasing in the direction of motion of the sensors. We analytically quantify the advantage of using such a sampling scheme over a static sampling scheme by computing the reduction in sampling noise due to the filter. We also analyze the effects of non-uniform sensor speeds on the reconstruction accuracy. Using simulation examples we demonstrate the advantages of mobile sampling over static sampling in practical problems. We extend our analysis to sampling and reconstruction schemes for monitoring time-varying bandlimited fields using mobile sensors. We demonstrate that in some situations we require a lower density of sensors when using a mobile sensing scheme instead of the conventional static sensing scheme. The exact advantage is quantified for a problem of sampling and reconstructing an audio field.Comment: Submitted to IEEE Transactions on Signal Processing May 2012; revised Oct 201

    High-resolution distributed sampling of bandlimited fields with low-precision sensors

    Full text link
    The problem of sampling a discrete-time sequence of spatially bandlimited fields with a bounded dynamic range, in a distributed, communication-constrained, processing environment is addressed. A central unit, having access to the data gathered by a dense network of fixed-precision sensors, operating under stringent inter-node communication constraints, is required to reconstruct the field snapshots to maximum accuracy. Both deterministic and stochastic field models are considered. For stochastic fields, results are established in the almost-sure sense. The feasibility of having a flexible tradeoff between the oversampling rate (sensor density) and the analog-to-digital converter (ADC) precision, while achieving an exponential accuracy in the number of bits per Nyquist-interval per snapshot is demonstrated. This exposes an underlying ``conservation of bits'' principle: the bit-budget per Nyquist-interval per snapshot (the rate) can be distributed along the amplitude axis (sensor-precision) and space (sensor density) in an almost arbitrary discrete-valued manner, while retaining the same (exponential) distortion-rate characteristics. Achievable information scaling laws for field reconstruction over a bounded region are also derived: With N one-bit sensors per Nyquist-interval, Θ(logN)\Theta(\log N) Nyquist-intervals, and total network bitrate Rnet=Θ((logN)2)R_{net} = \Theta((\log N)^2) (per-sensor bitrate Θ((logN)/N)\Theta((\log N)/N)), the maximum pointwise distortion goes to zero as D=O((logN)2/N)D = O((\log N)^2/N) or D=O(Rnet2βRnet)D = O(R_{net} 2^{-\beta \sqrt{R_{net}}}). This is shown to be possible with only nearest-neighbor communication, distributed coding, and appropriate interpolation algorithms. For a fixed, nonzero target distortion, the number of fixed-precision sensors and the network rate needed is always finite.Comment: 17 pages, 6 figures; paper withdrawn from IEEE Transactions on Signal Processing and re-submitted to the IEEE Transactions on Information Theor

    Novel Digital Alias-Free Signal Processing Approaches to FIR Filtering Estimation

    Get PDF
    This thesis aims at developing a new methodology of filtering continuous-time bandlimited signals and piecewise-continuous signals from their discrete-time samples. Unlike the existing state-of-the-art filters, my filters are not adversely affected by aliasing, allowing the designers to flexibly select the sampling rates of the processed signal to reach the required accuracy of signal filtering rather than meeting stiff and often demanding constraints imposed by the classical theory of digital signal processing (DSP). The impact of this thesis is cost reduction of alias-free sampling, filtering and other digital processing blocks, particularly when the processed signals have sparse and unknown spectral support. Novel approaches are proposed which can mitigate the negative effects of aliasing, thanks to the use of nonuniform random/pseudorandom sampling and processing algorithms. As such, the proposed approaches belong to the family of digital alias-free signal processing (DASP). Namely, three main approaches are considered: total random (ToRa), stratified (StSa) and antithetical stratified (AnSt) random sampling techniques. First, I introduce a finite impulse response (FIR) filter estimator for each of the three considered techniques. In addition, a generalised estimator that encompasses the three filter estimators is also proposed. Then, statistical properties of all estimators are investigated to assess their quality. Properties such as expected value, bias, variance, convergence rate, and consistency are all inspected and unveiled. Moreover, closed-form mathematical expression is devised for the variance of each single estimator. Furthermore, quality assessment of the proposed estimators is examined in two main cases related to the smoothness status of the filter convolution’s integrand function, \u1d454(\u1d461,\u1d70f)∶=\u1d465(\u1d70f)ℎ(\u1d461−\u1d70f), and its first two derivatives. The first main case is continuous and differentiable functions \u1d454(\u1d461,\u1d70f), \u1d454′(\u1d461,\u1d70f), and \u1d454′′(\u1d461,\u1d70f). Whereas in the second main case, I cover all possible instances where some/all of such functions are piecewise-continuous and involving a finite number of bounded discontinuities. Primarily obtained results prove that all considered filter estimators are unbiassed and consistent. Hence, variances of the estimators converge to zero after certain number of sample points. However, the convergence rate depends on the selected estimator and which case of smoothness is being considered. In the first case (i.e. continuous \u1d454(\u1d461,\u1d70f) and its derivatives), ToRa, StSa and AnSt filter estimators converge uniformly at rates of \u1d441−1, \u1d441−3, and \u1d441−5 respectively, where 2\u1d441 is the total number of sample points. More interestingly, in the second main case, the convergence rates of StSa and AnSt estimators are maintained even if there are some discontinuities in the first-order derivative (FOD) with respect to \u1d70f of \u1d454(\u1d461,\u1d70f) (for StSa estimator) or in the second-order derivative (SOD) with respect to \u1d70f of \u1d454(\u1d461,\u1d70f) (for AnSt). Whereas these rates drop to \u1d441−2 and \u1d441−4 (for StSa and AnSt, respectively) if the zero-order derivative (ZOD) (for StSa) and FOD (for AnSt) are piecewise-continuous. Finally, if the ZOD of \u1d454(\u1d461,\u1d70f) is piecewise-continuous, then the uniform convergence rate of the AnSt estimator further drops to \u1d441−2. For practical reasons, I also introduce the utilisation of the three estimators in a special situation where the input signal is pseudorandomly sampled from otherwise uniform and dense grid. An FIR filter model with an oversampled finite-duration impulse response, timely aligned with the grid, is proposed and meant to be stored in a lookup table of the implemented filter’s memory to save processing time. Then, a synchronised convolution sum operation is conducted to estimate the filter output. Finally, a new unequally spaced Lagrange interpolation-based rule is proposed. The so-called composite 3-nonuniform-sample (C3NS) rule is employed to estimate area under the curve (AUC) of an integrand function rather than the simple Rectangular rule. I then carry out comparisons for the convergence rates of different estimators based on the two interpolation rules. The proposed C3NS estimator outperforms other Rectangular rule estimators on the expense of higher computational complexity. Of course, this extra cost could only be justifiable for some specific applications where more accurate estimation is required
    corecore