187 research outputs found

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    Design and development of mobile channel simulators using digital signal processing techniques

    Get PDF
    A mobile channel simulator can be constructed either in the time domain using a tapped delay line filter or in the frequency domain using the time variant transfer function of the channel. Transfer function modelling has many advantages over impulse response modelling. Although the transfer function channel model has been envisaged by several researchers as an alternative to the commonly employed tapped delay line model, so far it has not been implemented. In this work, channel simulators for single carrier and multicarrier OFDM system based on time variant transfer function of the channel have been designed and implemented using DSP techniques in SIMULINK. For a single carrier system, the simulator was based on Bello's transfer function channel model. Bello speculated that about 10Βτ(_MAX) frequency domain branches might result in a very good approximation of the channel (where в is the signal bandwidth and τ(_MAX) is the maximum excess delay of the multi-path channel). The simulation results showed that 10Bτ(_MAX) branches gave close agreement with the tapped delay line model(where Be is the coherence bandwidth). This number is π times higher than the previously speculated 10Bτ(_MAX).For multicarrier OFDM system, the simulator was based on the physical (PHY) layer standard for IEEE 802.16-2004 Wireless Metropolitan Area Network (WirelessMAN) and employed measured channel transfer functions at the 2.5 GHz and 3.5 GHz bands in the simulations. The channel was implemented in the frequency domain by carrying out point wise multiplication of the spectrum of OFDM time The simulator was employed to study BER performance of rate 1/2 and rate 3/4 coded systems with QPSK and 16-QAM constellations under a variety of measured channel transfer functions. The performance over the frequency selective channel mainly depended upon the frequency domain fading and the channel coding rate

    A turbo-coded burst-by-burst adaptive wide-band speech transceiver

    Full text link

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    An optimised QPSK-based receiver structure for possibly sparse data transmission over narrowband and wideband communication systems

    Get PDF
    In this dissertation an in-depth study was conducted into the design, implementation and evaluation of a QPSK-based receiver structure for application in a UMTS WCDMA environment. The novelty of this work lies with the specific receiver architecture aimed to optimise the BER performance when possibly sparse data streams are transmitted. This scenario is a real possibility according to Verd´u et al [1] and Hagenauer et al [2–6]. A novel receiver structure was conceptualised, developed and evaluated in both narrowband and wideband scenarios, where it was found to outperform conventional receivers when a sparse data stream is transmitted. In order to reach the main conclusions of this study, it was necessary to develop a realistic simulation platform. The developed platform is capable of simulating a communication system meeting the physical layer requirements of the UMTS WCDMA standard. The platform can also perform narrowband simulations. A flexible channel emulator was developed that may be configured to simulate AWGN channel conditions, frequency non-selective fading (either Rayleigh or Rician with a configurable LOS component and Doppler spread), or a full multipath scenario where each path has a configurable LOS component, Doppler spread, path gain and path delay. It is therefore possible to even simulate a complex, yet realistic, COST207-TU channel model. The platform is also capable of simulating MUI. Each interfering user has a unique and independent multipath fading channel, while sharing the same bandwidth. Finally, the entire platform executes all simulations in baseband for improved simulation times. The research outputs of this work are summarised below: A parameter, the sparseness measure, was defined in order to quantify the level by which a data stream differs from an equiprobable data stream. A novel source model was proposed and developed to simulate data streams with a specified amount of sparseness. An introductory investigation was undertaken to determine the effect of simple FEC techniques on the sparseness of an encoded data stream. Novel receiver structures for both narrowband and wideband systems were proposed, developed and evaluated for systems where possibly sparse data streams may be transmitted. Analytic expressions were derived to take the effect of sparseness into account in communication systems, including expressions for the joint PDF of a BPSK branch, the optimal decision region of a detector in AWGN conditions as well as the BER performance of a communication system employing the proposed optimal receiver in both AWGN channel conditions as well as in flat fading channel conditions. Numerous BER performance curves were obtained comparing the proposed receiver structure with conventional receivers in a variety of channel conditions, including AWGN, frequency non-selective fading and a multipath COST207-TU channel environment, as well as the effect of MUI. AFRIKAANS : In hierdie verhandeling word ’n in-diepte studie gedoen rakende die ontwerp, implementasie en evaluasie van ’n KPSK-gebaseerde ontvanger struktuur wat in ’n UMTS WKVVT omgewing gebruik kan word. Die bydrae van hierdie werk lˆe in die spesifieke ontvanger argitektuur wat daarop mik om die BFT werksverrigting te optimeer wanneer yl data strome versend word. Hierdie is ’n realistiese moontlikheid volgens Verd´u et al [1] en Hagenauer et al [2–6]. ’n Nuwe ontvanger struktuur is gekonsepsualiseer, ontwikkel en evalueer vir beide noueband en wyeband stelsels, waar dit gevind is dat dit beter werksverrigting lewer as tradisionele ontvangers wanneer yl data strome versend word. Dit was nodig om ’n realistiese simulasie platform te ontwikkel om die belangrikste gevolgtrekkings van hierdie studie te kan maak. Die ontwikkelde platform is in staat om ’n kommunikasie stelsel te simuleer wat aan die fisiese laag vereistes van die UMTS WKVVT standaard voldoen. Die platform kan ook noueband stelsels simuleer. ’n Aanpasbare kanaal simulator is ontwikkel wat opgestel kan word om SWGR kanaal toestande, plat duining (beide Rayleigh of Ricies met ’n verstelbare siglyn komponent en Doppler verspreiding), sowel as ’n veelvuldige pad omgewing (waar elke unieke pad ’n verstelbare siglyn komponent, Doppler verspreiding, pad wins en pad vertraging het) te emuleer. Dit is selfs moontlik om ’n komplekse, maar steeds realistiese COST207-TU kanaal model te simuleer. Die platform het ook die vermo¨e om VGS te simuleer. Elke steurende gebruiker het ’n unieke en onafhanklike veelvuldige pad deinende kanaal, terwyl dieselfde bandwydte gedeel word. Laastens, alle simulasies van die platvorm word in basisband uitgevoer wat verkorte simulasie periodes verseker. Die navorsingsuitsette van hierdie werk kan as volg opgesom word: ’n Parameter, die ylheidsmaatstaf, is gedefin¨ýeer om dit moontlik te maak om die vlak waarmee die ylheid van ’n datastroom verskil van ’n ewekansige stroom te versyfer. ’n Nuwe bronmodel is voorgestel en ontwikkel om datastrome met ’n spesifieke ylheid te emuleer. ’n Inleidende ondersoek is onderneem om vas te stel wat die effek van VFK tegnieke op die ylheid van ’n enkodeerde datastroom is. Nuwe ontvanger strukture is voorgestel, ontwikkel en evalueer vir beide noueband en wyeband stelsels waar yl datastrome moontlik versend kan word. Analitiese uitdrukkings is afgelei om die effek van ylheid in ag te neem in kommunikasie stelsels. Uitdrukkings vir onder andere die gedeelte WDF van ’n BFVK tak, die optimale beslissingspunt van ’n detektor in SWGR toestande, sowel as die BFT werksverrigting van ’n kommunikasie stelsel wat van die voorgestelde optimale ontvangers gebruik maak, hetsy in SWGR of in plat duinende kanaal toestande. Talryke BFT werksverrigting krommes is verkry wat die voorgestelde ontvanger struktuur vergelyk met die konvensionele ontvangers in ’n verskeidenheid kanaal toestande, insluitend SWGR, plat duinende kanale en ’n veelvuldige pad COST207-TU kanaal omgewing, sowel as in die teenwoordigheid van VGS.</p CopyrightDissertation (MEng)--University of Pretoria, 2010.Electrical, Electronic and Computer Engineeringunrestricte

    Information Technology

    Get PDF
    The new millennium has been labeled as the century of the personal communications revolution or more specifically, the digital wireless communications revolution. The introduction of new multimedia services has created higher loads on available radio resources. These services can be presented in different levels of quality of service. Namely, the task of the radio resource manager is to provide these levels. Radio resources are scarce and need to be shared by many users. The sharing has to be carried out in an efficient way avoiding as much as possible any waste of resources. The main contribution focus of this work is on radio resource management in opportunistic systems. In opportunistic communications dynamic rate and power allocation may be performed over the dimensions of time, frequency and space in a wireless system. In this work a number of these allocation schemes are proposed. A downlink scheduler is introduced in this work that controls the activity of the users. The scheduler is a simple integral controller that controls the activity of users, increasing or decreasing it depending on the degree of proximity to a requested quality of service level. The scheduler is designed to be a best effort scheduler; that is, in the event the requested quality of service (QoS) cannot be attained, users are always guaranteed the basic QoS level provided by a proportional fair scheduler. In a proportional fair scheduler, the user with the best rate quality factor is selected. The rate quality here is the instantaneous achievable rate divided by the average throughput Uplink scheduling is more challenging than its downlink counterpart due to signalling restrictions and additional constraints on resource allocations. For instance, in long term evolution systems, single carrier FDMA is to be utilized which requires the frequency domain resource allocation to be done in such a way that a user could only be allocated subsequent bands. We suggest for the uplink a scheduler that follows a heuristic approach in its decision. The scheduler is mainly based on the gradient algorithm that maximizes the gradient of a certain utility. The utility could be a function of any QoS. In addition, an optimal uplink scheduler for the same system is presented. This optimal scheduler is valid in theory only, nevertheless, it provides a considerable benchmark for evaluation of performance for the heuristic scheduler as well as other algorithms of the same system. A study is also made for the feedback information in a multi-carrier system. In a multi-carrier system, reporting the channel state information (CSI) of every subcarrier will result in huge overhead and consequent waste in bandwidth. In this work the subcarriers are grouped into subbands which are in turn grouped into blocks and a study is made to find the minimum amount of information for the adaptive modulation and coding (AMC) of the blocks. The thesis also deals with admission control and proposes an opportunistic admission controller. The controller gradually integrates a new user requesting admission into the system. The system is probed to examine the effect of the new user on existing connections. The user is finally fully admitted if by the end of the probing, the quality of service (QoS) of existing connections did not drop below a certain threshold. It is imperative to mention that the research work of this thesis is mainly focused on non-real time applications.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    On the capacity of rate adaptive modulation systems over fading channel

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore