5,756 research outputs found

    Bayesian Nonparametric Hidden Semi-Markov Models

    Full text link
    There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM's strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can extend the HDP-HMM to capture such structure by drawing upon explicit-duration semi-Markovianity, which has been developed mainly in the parametric frequentist setting, to allow construction of highly interpretable models that admit natural prior information on state durations. In this paper we introduce the explicit-duration Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM) and develop sampling algorithms for efficient posterior inference. The methods we introduce also provide new methods for sampling inference in the finite Bayesian HSMM. Our modular Gibbs sampling methods can be embedded in samplers for larger hierarchical Bayesian models, adding semi-Markov chain modeling as another tool in the Bayesian inference toolbox. We demonstrate the utility of the HDP-HSMM and our inference methods on both synthetic and real experiments

    Equi-energy sampler with applications in statistical inference and statistical mechanics

    Get PDF
    We introduce a new sampling algorithm, the equi-energy sampler, for efficient statistical sampling and estimation. Complementary to the widely used temperature-domain methods, the equi-energy sampler, utilizing the temperature--energy duality, targets the energy directly. The focus on the energy function not only facilitates efficient sampling, but also provides a powerful means for statistical estimation, for example, the calculation of the density of states and microcanonical averages in statistical mechanics. The equi-energy sampler is applied to a variety of problems, including exponential regression in statistics, motif sampling in computational biology and protein folding in biophysics.Comment: This paper discussed in: [math.ST/0611217], [math.ST/0611219], [math.ST/0611221], [math.ST/0611222]. Rejoinder in [math.ST/0611224]. Published at http://dx.doi.org/10.1214/009053606000000515 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Markov Chain Monte Carlo: Can We Trust the Third Significant Figure?

    Full text link
    Current reporting of results based on Markov chain Monte Carlo computations could be improved. In particular, a measure of the accuracy of the resulting estimates is rarely reported. Thus we have little ability to objectively assess the quality of the reported estimates. We address this issue in that we discuss why Monte Carlo standard errors are important, how they can be easily calculated in Markov chain Monte Carlo and how they can be used to decide when to stop the simulation. We compare their use to a popular alternative in the context of two examples.Comment: Published in at http://dx.doi.org/10.1214/08-STS257 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore