62,037 research outputs found

    A SAT-based System for Consistent Query Answering

    Full text link
    An inconsistent database is a database that violates one or more integrity constraints, such as functional dependencies. Consistent Query Answering is a rigorous and principled approach to the semantics of queries posed against inconsistent databases. The consistent answers to a query on an inconsistent database is the intersection of the answers to the query on every repair, i.e., on every consistent database that differs from the given inconsistent one in a minimal way. Computing the consistent answers of a fixed conjunctive query on a given inconsistent database can be a coNP-hard problem, even though every fixed conjunctive query is efficiently computable on a given consistent database. We designed, implemented, and evaluated CAvSAT, a SAT-based system for consistent query answering. CAvSAT leverages a set of natural reductions from the complement of consistent query answering to SAT and to Weighted MaxSAT. The system is capable of handling unions of conjunctive queries and arbitrary denial constraints, which include functional dependencies as a special case. We report results from experiments evaluating CAvSAT on both synthetic and real-world databases. These results provide evidence that a SAT-based approach can give rise to a comprehensive and scalable system for consistent query answering.Comment: 25 pages including appendix, to appear in the 22nd International Conference on Theory and Applications of Satisfiability Testin

    Benchmarking Approximate Consistent Query Answering

    Get PDF

    Prioritized Repairing and Consistent Query Answering in Relational Databases

    Get PDF
    A consistent query answer in an inconsistent database is an answer obtained in every (minimal) repair. The repairs are obtained by resolving all conflicts in all possible ways. Often, however, the user is able to provide a preference on how conflicts should be resolved. We investigate here the framework of preferred consistent query answers, in which user preferences are used to narrow down the set of repairs to a set of preferred repairs. We axiomatize desirable properties of preferred repairs. We present three different families of preferred repairs and study their mutual relationships. Finally, we investigate the complexity of preferred repairing and computing preferred consistent query answers.Comment: Accepted to the special SUM'08 issue of AMA

    Answer Sets for Consistent Query Answering in Inconsistent Databases

    Full text link
    A relational database is inconsistent if it does not satisfy a given set of integrity constraints. Nevertheless, it is likely that most of the data in it is consistent with the constraints. In this paper we apply logic programming based on answer sets to the problem of retrieving consistent information from a possibly inconsistent database. Since consistent information persists from the original database to every of its minimal repairs, the approach is based on a specification of database repairs using disjunctive logic programs with exceptions, whose answer set semantics can be represented and computed by systems that implement stable model semantics. These programs allow us to declare persistence by defaults and repairing changes by exceptions. We concentrate mainly on logic programs for binary integrity constraints, among which we find most of the integrity constraints found in practice.Comment: 34 page

    Inconsistency-tolerant Query Answering in Ontology-based Data Access

    Get PDF
    Ontology-based data access (OBDA) is receiving great attention as a new paradigm for managing information systems through semantic technologies. According to this paradigm, a Description Logic ontology provides an abstract and formal representation of the domain of interest to the information system, and is used as a sophisticated schema for accessing the data and formulating queries over them. In this paper, we address the problem of dealing with inconsistencies in OBDA. Our general goal is both to study DL semantical frameworks that are inconsistency-tolerant, and to devise techniques for answering unions of conjunctive queries under such inconsistency-tolerant semantics. Our work is inspired by the approaches to consistent query answering in databases, which are based on the idea of living with inconsistencies in the database, but trying to obtain only consistent information during query answering, by relying on the notion of database repair. We first adapt the notion of database repair to our context, and show that, according to such a notion, inconsistency-tolerant query answering is intractable, even for very simple DLs. Therefore, we propose a different repair-based semantics, with the goal of reaching a good compromise between the expressive power of the semantics and the computational complexity of inconsistency-tolerant query answering. Indeed, we show that query answering under the new semantics is first-order rewritable in OBDA, even if the ontology is expressed in one of the most expressive members of the DL-Lite family

    An Operational Approach to Consistent Query Answering

    Get PDF

    A Comprehensive Framework for Controlled Query Evaluation, Consistent Query Answering and KB Updates in Description Logics

    Get PDF
    In this extended abstract we discuss the relationship between confidentiality-preserving frameworks and inconsistency-tolerant repair and update semantics in Description Logics (DL). In particular, we consider the well-known problems of Consistent Query Answering, Controlled Query Evaluation, and Knowledge Base Update in DL and introduce a unifying framework that can be naturally instantiated to capture significant settings for the above problems, previously investigated in the literature

    Consistent Query Answering for Primary Keys in Logspace

    Get PDF
    We study the complexity of consistent query answering on databases that may violate primary key constraints. A repair of such a database is any consistent database that can be obtained by deleting a minimal set of tuples. For every Boolean query q, CERTAINTY(q) is the problem that takes a database as input and asks whether q evaluates to true on every repair. In [Koutris and Wijsen, ACM TODS, 2017], the authors show that for every self-join-free Boolean conjunctive query q, the problem CERTAINTY(q) is either in P or coNP-complete, and it is decidable which of the two cases applies. In this paper, we sharpen this result by showing that for every self-join-free Boolean conjunctive query q, the problem CERTAINTY(q) is either expressible in symmetric stratified Datalog (with some aggregation operator) or coNP-complete. Since symmetric stratified Datalog is in L, we thus obtain a complexity-theoretic dichotomy between L and coNP-complete. Another new finding of practical importance is that CERTAINTY(q) is on the logspace side of the dichotomy for queries q where all join conditions express foreign-to-primary key matches, which is undoubtedly the most common type of join condition
    • …
    corecore