23,473 research outputs found

    A Factoid Question Answering System for Vietnamese

    Full text link
    In this paper, we describe the development of an end-to-end factoid question answering system for the Vietnamese language. This system combines both statistical models and ontology-based methods in a chain of processing modules to provide high-quality mappings from natural language text to entities. We present the challenges in the development of such an intelligent user interface for an isolating language like Vietnamese and show that techniques developed for inflectional languages cannot be applied "as is". Our question answering system can answer a wide range of general knowledge questions with promising accuracy on a test set.Comment: In the proceedings of the HQA'18 workshop, The Web Conference Companion, Lyon, Franc

    Digital reference services : a snapshot of the current practices in scottish libraries

    Get PDF
    Discusses the current practices followed by some major libraries in Scotland for providing digital reference services(DRS). Refers to the DRSs provided by three academic libraries, namely Glasgow University Library, the University of Strathclyde Library, and Glasgow Caledonian University Library, and two other premier libraries in Scotland, the Mitchell Library in Glasgow and the National Library of Scotland in Edinburgh. Concludes that digital reference services are effective forms of service delivery in Scotland's academic, national and public libraries, but that their full potential has not yet been exploited. E-mail is the major technology used in providing digital reference, although plans are under way to use more sophisticated Internet technologies. Notes that the majority of enquiries handled by the libraries are relatively low-level rather than concerning specific knowledge domains, and training the users to extract information from the best digital resources still remains a challenge

    Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Get PDF
    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined

    The history of information retrieval research

    Get PDF
    This paper describes a brief history of the research and development of information retrieval systems starting with the creation of electromechanical searching devices, through to the early adoption of computers to search for items that are relevant to a user's query. The advances achieved by information retrieval researchers from the 1950s through to the present day are detailed next, focusing on the process of locating relevant information. The paper closes with speculation on where the future of information retrieval lies

    A Framework for Developing Real-Time OLAP algorithm using Multi-core processing and GPU: Heterogeneous Computing

    Full text link
    The overwhelmingly increasing amount of stored data has spurred researchers seeking different methods in order to optimally take advantage of it which mostly have faced a response time problem as a result of this enormous size of data. Most of solutions have suggested materialization as a favourite solution. However, such a solution cannot attain Real- Time answers anyhow. In this paper we propose a framework illustrating the barriers and suggested solutions in the way of achieving Real-Time OLAP answers that are significantly used in decision support systems and data warehouses

    Why (and How) Networks Should Run Themselves

    Full text link
    The proliferation of networked devices, systems, and applications that we depend on every day makes managing networks more important than ever. The increasing security, availability, and performance demands of these applications suggest that these increasingly difficult network management problems be solved in real time, across a complex web of interacting protocols and systems. Alas, just as the importance of network management has increased, the network has grown so complex that it is seemingly unmanageable. In this new era, network management requires a fundamentally new approach. Instead of optimizations based on closed-form analysis of individual protocols, network operators need data-driven, machine-learning-based models of end-to-end and application performance based on high-level policy goals and a holistic view of the underlying components. Instead of anomaly detection algorithms that operate on offline analysis of network traces, operators need classification and detection algorithms that can make real-time, closed-loop decisions. Networks should learn to drive themselves. This paper explores this concept, discussing how we might attain this ambitious goal by more closely coupling measurement with real-time control and by relying on learning for inference and prediction about a networked application or system, as opposed to closed-form analysis of individual protocols
    • …
    corecore