19,852 research outputs found

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    Holographic R\'enyi Entropy and Generalized Entropy method

    Get PDF
    In this paper we use the method of generalized gravitational entropy in \cite{Lewkowycz:2013nqa} to construct the dual bulk geometry for a spherical entangling surface, and calculate the R\'enyi entropy with the dual bulk gravity theory being either Einstein gravity or Lovelock gravity, this approach is closely related to that in \cite{Casini:2011kv}. For a general entangling surface we derive the area law of entanglement entropy. The area law is closely related with the local property of the entangling surface.Comment: 17+6 page

    Conformal Correlation Functions, Frobenius Algebras and Triangulations

    Get PDF
    We formulate two-dimensional rational conformal field theory as a natural generalization of two-dimensional lattice topological field theory. To this end we lift various structures from complex vector spaces to modular tensor categories. The central ingredient is a special Frobenius algebra object A in the modular category that encodes the Moore-Seiberg data of the underlying chiral CFT. Just like for lattice TFTs, this algebra is itself not an observable quantity. Rather, Morita equivalent algebras give rise to equivalent theories. Morita equivalence also allows for a simple understanding of T-duality. We present a construction of correlators, based on a triangulation of the world sheet, that generalizes the one in lattice TFTs. These correlators are modular invariant and satisfy factorization rules. The construction works for arbitrary orientable world sheets, in particular for surfaces with boundary. Boundary conditions correspond to representations of the algebra A. The partition functions on the torus and on the annulus provide modular invariants and NIM-reps of the fusion rules, respectively.Comment: 17 pages, LaTeX2e; v2: more references and Note added in proo

    Quivers, Tilings, Branes and Rhombi

    Full text link
    We describe a simple algorithm that computes the recently discovered brane tilings for a given generic toric singular Calabi-Yau threefold. This therefore gives AdS/CFT dual quiver gauge theories for D3-branes probing the given non-compact manifold. The algorithm solves a longstanding problem by computing superpotentials for these theories directly from the toric diagram of the singularity. We study the parameter space of a-maximization; this study is made possible by identifying the R-charges of bifundamental fields as angles in the brane tiling. We also study Seiberg duality from a new perspective.Comment: 36 pages, 40 figures, JHEP

    4d N=1\mathcal{N} = 1/2d Yang-Mills Duality in Holography

    Full text link
    We study the supergravity dual of four-dimensional N=1{\mathcal{N}=1} superconformal field theories arising from wrapping M5-branes on a K\"ahler two-cycle inside a Calabi-Yau threefold. We derive an effective three-dimensional theory living on the cobordism between the infrared and ultraviolet Riemann surfaces, describing the renormalization group flows between AdS7_7 and AdS5_{5} as well as between different AdS5_{5} fixed points. The realization of this system as an effective theory is convenient to make connections to known theories, and we show that upon imposing (physical) infrared boundary conditions, the effective three-dimensional theory further reduces to two-dimensional SU(2)SU(2) Yang-Mills theory on the Riemann surface, thus deriving a correspondence between the gravity duals of a class of N=1\mathcal{N}=1 superconformal field theories arising from wrapping M5-branes on a Riemann surface and two-dimensional Yang-Mills theory on the same Riemann surface.Comment: 18 pages, 2 figure

    Membranes with Topological Charge and AdS4/CFT3 Correspondence

    Full text link
    If the second Betti number b_2 of a Sasaki-Einstein manifold Y^7 does not vanish, then M-theory on AdS_4 x Y^7 possesses "topological" U(1)^{b_2} gauge symmetry. The corresponding Abelian gauge fields come from three-form fluctuations with one index in AdS_4 and the other two in Y^7. We find black membrane solutions carrying one of these U(1) charges. In the zero temperature limit, our solutions interpolate between AdS_4 x Y^7 in the UV and AdS_2 x R^2 x squashed Y^7 in the IR. In fact, the AdS_2 x R^2 x squashed Y^7 background is by itself a solution of the supergravity equations of motion. These solutions do not appear to preserve any supersymmetry. We search for their possible instabilities and do not find any. We also discuss the meaning of our charged membrane backgrounds in a dual quiver Chern-Simons gauge theory with a global U(1) charge density. Finally, we present a simple analytic solution which has the same IR but different UV behavior. We reduce this solution to type IIA string theory, and perform T-duality to type IIB. The type IIB metric turns out to be a product of the squashed Y^7 and the extremal BTZ black hole. We discuss an interpretation of this type IIB background in terms of the (1+1)-dimensional CFT on D3-branes partially wrapped over the squashed Y^7.Comment: 57 pages, 7 figure

    Finite, diffeomorphism invariant observables in quantum gravity

    Full text link
    Two sets of spatially diffeomorphism invariant operators are constructed in the loop representation formulation of quantum gravity. This is done by coupling general relativity to an anti- symmetric tensor gauge field and using that field to pick out sets of surfaces, with boundaries, in the spatial three manifold. The two sets of observables then measure the areas of these surfaces and the Wilson loops for the self-dual connection around their boundaries. The operators that represent these observables are finite and background independent when constructed through a proper regularization procedure. Furthermore, the spectra of the area operators are discrete so that the possible values that one can obtain by a measurement of the area of a physical surface in quantum gravity are valued in a discrete set that includes integral multiples of half the Planck area. These results make possible the construction of a correspondence between any three geometry whose curvature is small in Planck units and a diffeomorphism invariant state of the gravitational and matter fields. This correspondence relies on the approximation of the classical geometry by a piecewise flat Regge manifold, which is then put in correspondence with a diffeomorphism invariant state of the gravity-matter system in which the matter fields specify the faces of the triangulation and the gravitational field is in an eigenstate of the operators that measure their areas.Comment: Latex, no figures, 30 pages, SU-GP-93/1-
    • …
    corecore